100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Exam Summary/Samenvatting Multivariate Data Analysis (MVDA) Statistics

Beoordeling
-
Verkocht
2
Pagina's
38
Geüpload op
07-11-2022
Geschreven in
2022/2023

This document covers all the material needed for the MVDA exam. It is condensed so it can be used for the cheat sheet.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
7 november 2022
Aantal pagina's
38
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MVDA Examination Summary
Exam: 21.06.2022 @ 13:00 - 15:00
To test a research question (for a population):
● Take a sample from the population of interest
● Measure the relevant constructs → data = variables
● Apply appropriate statistical technique


3 levels of measurement are relevant
1. NOM = nominal level only distinguishes categories (no therapy, psycho-dynamic, exposure)
2. INT = interval level if intervals meaningful (weight, height, IQ, BDI (quasi-interval))
3. BIN = binary variable has 2 categories: can be NOM or INT (pass/fail, male/female)


Which technique, depends on measurement level of variables:




Four techniques of weeks 1 to 4 in diagrams:




Week 1 - Multiple Regression Analysis
Can Y be predicted from X1 and/or X2? (Y , X1, X2 = INT)
Model that works really well: dependent variable Y is a linear function of predictors X1 and X2


Regression Model = provides a function that describes the relationship between one or more
independent variables and a response, dependent, or target variable


Simple Regression → Yi = b∗0 + b∗1 X1i + ei

,Multiple Regression → Yi = b∗0 + b∗1 X1i + b∗2 X2i + · · · + b∗k Xki + ei
● b∗0 is the (population) regression constant
● b∗1 , b∗2 ,..., b∗k are (population) regression coefficients
● X1i, X2i,..., Xki and Yi are the scores on X1, X2,..., Xk and Y of individual i
● ei is a residual (= error)
The parameters b∗0 , b∗1 , b∗2 ,..., and b∗k need to be estimated
from the data (sample). Linear model: least squares estimation (e.g.
SPSS)


Linear model with one predictor: simple regression - fit a straight line




(where the line leaves the Y axis (BDI), that is the Constant point)


Best prediction (least squares) if the sum of squared differences:


Why bother with the regression model? → the regression model
describes relationship between depression (Y ) and life events (X1)
and coping (X2) in the population & it can be used to predict the
depression score of individuals that are not in the original
study/sample


Null Hypothesis = always predicts no effect or no relationship between variables
Test with →
Alternative Hypothesis = states your research prediction of an effect or relationship
Sum of squares related by:




How good is prediction? → statistic: is the
coefficient of determination

, ● R = multiple correlation coefficient
○ R is Pearson correlation between Y and combi of X1 and X2
● Value between 0 and 1 R2 reflects how much variance of Y is explained by X1 and X2
○ (VAF = variance accounted for)
● More general: R2 reflects how good the linear model describes the observed data
Another formula is:


Strong relationship → if most observed scores Yi are close to the
regression plane Yˆi
Weak relationship → if many observed scores Yi are far away from the
regression plane Yˆi


How important is a predictor?
^ is the semipartial correlation of Y and X1 corrected for X2
→ is ‘Part’ in SPSS, always a value between 1 and -1
→ ry2(1.2) reflects how much variance of Y is uniquely (only) explained by X1


Beta β = (of regression coefficient) reflects importance of the coefficient: predictors with high
absolute bet are more important
Partial Correlation = (of a predictor) reflects how much variance of Y is explained by the
predictor that is not explained by other variables in the analysis


Partial VS Semipartial Correlation
Dependent variable Y and predictors X1 and X2:
● V1 is part explained by X1
● V2 is part explained by X2
● W is part explained by X1 and X2
● U is unexplained part of Y


For the figure, the squared semipartial correlation is
while the squared partial correlation is


Assumptions of the regression model:

, ● Are needed for sampling distribution of coefficients → test
value against e.g. 0
● Can be expressed in terms of residuals ei
When assumptions are violated:
● Usually no effect on estimates of coefficients
● Effects standard errors of coefficients → wrong conclusions
about significance
Assumptions characterise the population, not the sample:
● Cannot be tested directly
● Check assumptions for the sample → if violated in sample,
unlikely to be true in population
● Check using graphical tools (useful, lack objectivity) and tests




If assumptions are violated:
● Usually no effect on estimates of coefficients
● Effects standard errors of coefficients
→ affects value of test statistics (F-value, t-values)
→ affects p-values
→ wrong conclusions about H0 and significance


Using the linear model:
● Variables have interval level of measurement
● Dependent variable is a linear combination of predictors


Testing coefficients:
Homoscedasticity = variance of residuals is constant across predicted values
● Heteroscedasticity affects standard errors of regression coefficients bj
● Homoscedasticity usually does not hold exactly
Independence of Residuals ei = individuals respond independently of one another
Normality = test for small samples, with large samples central limit theorem

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
evalindekuyper Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
55
Lid sinds
3 jaar
Aantal volgers
46
Documenten
9
Laatst verkocht
1 jaar geleden

2,0

2 beoordelingen

5
0
4
0
3
1
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen