100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Notes Lectures Business Statistics VU IBA

Beoordeling
-
Verkocht
2
Pagina's
28
Geüpload op
21-09-2022
Geschreven in
2021/2022

Summary containing all the relevant theory discussed during the lectures of the course Business Statistics given in the first year of International Business Administration at the Vrije Universiteit Amsterdam. By learning this summary I personally passed the final exam.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 september 2022
Aantal pagina's
28
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Andre lucas
Bevat
Alle colleges

Voorbeeld van de inhoud

Lecture 1: Data, visuals and descriptives
The data matrix or data frame:
Data are put into a Data Matrix or Data Frame (Excel sheet)
- Columns: variables
- Rows: subjects/cases
- Cells: observations of a variable for that specific subject/case

Data types and example:




Determining the measurement level:




Missing data:
Missing data can be dealt with in various ways in
statistical analysis
- Delete missing cases: easy, but loses information
- Impute (cleverly guess) missing cases: for
instance,
o by filling out the mean income if income is
missing
o by filling out the most frequent video
category (if category is missing). This
retains more observations / cases, but
hinges on the correctness of the
imputation assumptions

,Population vs sample:
The population is the collection of all possible data points: typically, we do *not* have it! (e.g.,
the population of ALL 1st year VU business students)

A sample is a subset of data taken from the population. (e.g., the students present today in
this session are a sample of all VU 1st year business students)
- We use this sample to infer something about the population:
o e.g., is there sufficient support for increasing expat subsidies under low-
income residents
o A sample always has an aspect of randomness to it: it could have been a
different sample

Categorical data:
#occurrences
-Summary measures for categorical data: Proportion: 𝑝 = 𝑛
-Sample proportion = p, population proportion = , population size = N
-Skewness is a measure of asymmetry
-Kurtosis is a measure of tail flatness/fatness → if kurtosis is large, more outliers/huge
outcomes compared to normal cases

Numerical variables:
∑𝑛 ̅)
𝑖=1(𝑥𝑖 −𝑥̅ )(𝑦𝑖 −𝑦
Sample covariance: 𝑆𝑋𝑌 = 𝑛−1

𝑺
Sample (Pearson) correlation: 𝑺 𝑿𝒀
𝑺 𝑿 𝒀


Correlation is a standardized (scale free) analogue of the covariance: both should
have the same sign.

, Lecture 2: Probability
Event: A is an event (A’ denotes not event A)
Examples: event A can be “heads” in a coin toss (and A’ is then “tails”), or A can be throwing
4 with a fair dice, or having a goal outcome (149,0)
- An event must be inside the sample space, otherwise it cannot occur (it will have
probability zero; in a coin toss throwing “telephone” is impossible)

Probability: P(A) the probability of event A

Notation:
-𝑃 (𝐴 ∪ 𝐵) means probability of either A or B or both A and B happening
-𝑃 (𝐴 ∩ 𝐵) means probability of both A and B happening jointly
-Disjoint: events A and B are disjoint if they cannot happen at the same
time (i.e., probability of A and B together is zero, or 𝑃 𝐴 ∩ 𝐵 = 0)

𝑃(𝐴) 1−𝑃(𝐴)
-Odds for 𝐴: 1−𝑃(𝐴)
; odds against 𝐴: 𝑃(𝐴)
• General law of addition: 𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵)
• Conditional probability: 𝑃 (𝐴 |𝐵) = 𝑃(𝐴 ∩ 𝐵)/𝑃 (𝐵)
• General law of multiplication: 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵) 𝑃 (𝐵) = 𝑃 (𝐵|𝐴) 𝑃(𝐴)

Types of probability:
-Classical: P (event) =
number of elementary outcomes in event
number of possible elementary outcomes


-Empirical: P (event) =
number of elementary outcomes in event
number of observations




Important properties of a probability function P(A)
- For every event A in the sample space: 0  P(A)1
- For entire sample space S, we have P(S) = 1: the probability of obtaining some
outcome out of the set of all possible outcomes is 1
- For disjoint events A and B, we have we have 𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵)
- However, if events are not disjoint, then 𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) - 𝑃 (𝐴 ∩ 𝐵)

The complement of an event 𝐴 is denoted by 𝐴% and consists of everything in the sample
space 𝑆 except event 𝐴 → Since 𝐴 and 𝐴% have no overlap and together comprise the entire
sample space 𝑆, 𝑃 (𝐴) + 𝑃 (𝐴’) = 1 or 𝑷 (𝑨’) = 𝟏 − 𝑷(𝑨)

-The empty set denoted as ∅ contains no elements: 𝑃 ∅ = 0.

𝐴∪B
-The union of two events consists of all elementary outcomes in the
sample space that are contained either in event 𝐴 or in event 𝐵 or in
both
- denoted by 𝐴 ∪ B
- pronounced as “𝐴 or 𝐵” (“or” meaning here “and/or”)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
vustudentsbe Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
30
Lid sinds
4 jaar
Aantal volgers
14
Documenten
25
Laatst verkocht
1 maand geleden

3,5

2 beoordelingen

5
0
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen