1.1 Introductie van functies van 1 variabele
Nulpunt functie met 1 variabele:
Het nulpunt van de functie y(x) is de vergelijking y(x) = 0 dit geeft a. Het nulpunt = (a,0) is het
snijpunt met de x-as ofwel het nulpunt.
Snijpunt van 2 grafieken
Snijpunt van de grafieken van functies y(x) en z(x) is punt (a,b). Hier is a de oplossing van de
vergelijking y(x) = z(x) en b = y(a) v z(a).
Snijpunt y-as
Het snijpunt van de y-as is te vinden door x = 0 in te vullen in de functie. Het snijpunt met de y-as is
dus het punt (0,y(0))
1.2 Overzicht van functies van 1 variabele
1.2.1 Polynoomfuncties
Constante functies
Een functie van de vorm y(x) = c
Het wordt een constante genoemd omdat de functiewaarde ondanks
de x altijd hetzelfde blijft. De grafiek van een constante functie is een
horizontale lijn. Een constante functie heeft geen nulpunt
wanneer c ≠ 0. Wanneer c = 0 geeft elke x een nulpunt.
Lineaire functies
Een functie van de vorm y(x) = ax + b
Wanneer a = 0 is het een constante functie.
De grafiek van een lineaire functie is een rechte lijn. Bij een lineaire
functie is a de helling van de lijn (richtingscoëfficiënt). a geeft aan
hoeveel de functiewaarde verandert wanneer x met 1 toeneemt.
a = y(x+1) - y(x)
Een lineaire functie heeft een positieve helling wanneer a > 0 en
negatief wanneer a < 0.
Het nulpunt is de vinden door (-b / a) = x
, Kwadratische functies
Een functie van de vorm y(x) = ax² + bx + c
Wanneer a = 0 is de functie of lineair (als b ≠
0) of constant (b = 0).
Een kwadratische functie is een parabool. Het is een
dalparabool wanneer a > 0 en een bergparabool
wanneer a < 0.
De snijpunten met de x-as worden berekend door y(x) =
0.
Ontbinden in factoren kan er ook voor zorgen dat je de
nulpunten vindt.
abc-formule
De abc-formule is erg belangrijk voor het vinden van de
nulpunten.
D = b² - 4ac
ABC-formule = (-b ± √D) / 2a
Wanneer D > 0 zijn er 2 oplossingen
1 met een + Discriminant en 1 met een - Discriminant.
Wanneer D = 0 is er 1 oplossing
x = (-b) / 2a
Wanneer D < 0 zijn er 0 oplossingen.
Ongelijkheid oplossen
Bijvoorbeeld f(x) ≥ g(x)
De functiewaarden van f zijn groter dan de functiewaarden van g.
Om deze ongelijkheden op te lossen is er een stappenplan:
1. Definieer de functie h(x) = f(x) - g(x)
2. Bepaal de nulpunten van h(x) → h(x) = 0
3. Maak een tekenschema
4. Lees af uit het tekenschema h(x) ≥ 0
Conclusie: De waarden voor h(x) ≥ 0 zijn dezelfde
als waarvoor f(x) ≥ g(x) Wanneer je kijkt naar h(x)
≤ 0 is dat hetzelfde als f(x) ≤ g(x).
Polynoomfuncties
Een functie van de vorm y(x) = xn + xn-1 + x
De graad van de polynoomfunctie is gelijk aan n, ofwel de
hoogste macht van de polynoomfunctie.
Je vindt de nulpunten door de functie gelijk te stellen aan 0 dus y(x)
=0
Nulpunt functie met 1 variabele:
Het nulpunt van de functie y(x) is de vergelijking y(x) = 0 dit geeft a. Het nulpunt = (a,0) is het
snijpunt met de x-as ofwel het nulpunt.
Snijpunt van 2 grafieken
Snijpunt van de grafieken van functies y(x) en z(x) is punt (a,b). Hier is a de oplossing van de
vergelijking y(x) = z(x) en b = y(a) v z(a).
Snijpunt y-as
Het snijpunt van de y-as is te vinden door x = 0 in te vullen in de functie. Het snijpunt met de y-as is
dus het punt (0,y(0))
1.2 Overzicht van functies van 1 variabele
1.2.1 Polynoomfuncties
Constante functies
Een functie van de vorm y(x) = c
Het wordt een constante genoemd omdat de functiewaarde ondanks
de x altijd hetzelfde blijft. De grafiek van een constante functie is een
horizontale lijn. Een constante functie heeft geen nulpunt
wanneer c ≠ 0. Wanneer c = 0 geeft elke x een nulpunt.
Lineaire functies
Een functie van de vorm y(x) = ax + b
Wanneer a = 0 is het een constante functie.
De grafiek van een lineaire functie is een rechte lijn. Bij een lineaire
functie is a de helling van de lijn (richtingscoëfficiënt). a geeft aan
hoeveel de functiewaarde verandert wanneer x met 1 toeneemt.
a = y(x+1) - y(x)
Een lineaire functie heeft een positieve helling wanneer a > 0 en
negatief wanneer a < 0.
Het nulpunt is de vinden door (-b / a) = x
, Kwadratische functies
Een functie van de vorm y(x) = ax² + bx + c
Wanneer a = 0 is de functie of lineair (als b ≠
0) of constant (b = 0).
Een kwadratische functie is een parabool. Het is een
dalparabool wanneer a > 0 en een bergparabool
wanneer a < 0.
De snijpunten met de x-as worden berekend door y(x) =
0.
Ontbinden in factoren kan er ook voor zorgen dat je de
nulpunten vindt.
abc-formule
De abc-formule is erg belangrijk voor het vinden van de
nulpunten.
D = b² - 4ac
ABC-formule = (-b ± √D) / 2a
Wanneer D > 0 zijn er 2 oplossingen
1 met een + Discriminant en 1 met een - Discriminant.
Wanneer D = 0 is er 1 oplossing
x = (-b) / 2a
Wanneer D < 0 zijn er 0 oplossingen.
Ongelijkheid oplossen
Bijvoorbeeld f(x) ≥ g(x)
De functiewaarden van f zijn groter dan de functiewaarden van g.
Om deze ongelijkheden op te lossen is er een stappenplan:
1. Definieer de functie h(x) = f(x) - g(x)
2. Bepaal de nulpunten van h(x) → h(x) = 0
3. Maak een tekenschema
4. Lees af uit het tekenschema h(x) ≥ 0
Conclusie: De waarden voor h(x) ≥ 0 zijn dezelfde
als waarvoor f(x) ≥ g(x) Wanneer je kijkt naar h(x)
≤ 0 is dat hetzelfde als f(x) ≤ g(x).
Polynoomfuncties
Een functie van de vorm y(x) = xn + xn-1 + x
De graad van de polynoomfunctie is gelijk aan n, ofwel de
hoogste macht van de polynoomfunctie.
Je vindt de nulpunten door de functie gelijk te stellen aan 0 dus y(x)
=0