100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Machine Learning (880083-M-6)

Beoordeling
4,0
(1)
Verkocht
4
Pagina's
16
Geüpload op
21-06-2022
Geschreven in
2021/2022

Detailed summary of all lectures and additional notes, explanations and examples for the course "Machine Learning" at Tilburg University which is part of the Master Data Science and Society. Course was given by Ç. Güven during the second semester, block four of the academic year 2021 / 2022 (April to June 2022).

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 juni 2022
Aantal pagina's
16
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Tilburg University
Study Program: Master Data Science and Society
Academic Year 2021/2022, Semester 2, Block 4 (April to June 2022)


Course: Machine Learning (880083-M-6)
Lecturers: Ç. Güven

,Lecture 1: Introduction to Machine Learning
Machine Learning
• Machine Learning means learning from experience
• Concept of Generalization: Algorithm also works with unseen data

Types of learning problems
• Supervised (Classification, Regression) vs Unsupervised Learning (Clustering)
• Multilabel Classification: multiple labels per sample
o Assign songs to one or more genres (for each genre, each song is labeled yes or no)
• Multiclass Classification: one label per sample
o Assign songs to one genre (for each song one label is chosen)

Evaluation
• Mean absolute error: average, absolute difference between true value and predicted value




• Mean squared error: average square of the difference between the true and the predicted
value (more sensitive to outliers, usually larger than MAE)




• Type I error: false positive
• Type II error: false negative
• accuracy compares the true prediction vs the whole set of datapoints
o (TP + TN) / (TP + FN + FP + TN)
• Error rate / misclassification rate
o (FP + FN) / (TP + FN + FP + TN)
• Accuracy and error rate are only useful if the dataset is balanced
• precision is the hit-rate (true positives vs the ones predicted as positives)
o “What fraction of flagged emails are real SPAM?”
o (TP) / (TP + FP)
• recall is the true positive rate (true positives vs the actual positives)
o “What fraction of real SPAM has been flagged?”
o (TP) / (TP + FN)
• F or F1 score combines precision and recall and comes up with a harmonic mean of the two
o 2* [ ( (TP) / (TP + FP) ) * ( (TP) / (TP + FN) ) ] / [ ( (TP) / (TP + FP) ) + ( (TP) / (TP + FN) ) ]
o 2* [ Precision * Recall ] / [ Precision + Recall ]
• Use F beta to give more weight to recall or precision
o > 1: recall is weighted more
o < 1, precision is weighted more

, • When there are more than two classes use micro and macro average
o Macro average
▪ rare classes have the same impact as frequent classes (don’t use this one
when the classes are not balanced!)
▪ Compute precision and recall per-class, and average them
o Micro average
▪ Micro averaging treats the entire set of data as an aggregate result, and
calculates 1 metric rather than k metrics that get averaged together



o Macro F1-Score is the harmonic mean of Macro-Precision and Macro-Recall

Find the best possible solution
• We are trying to approximate the relation between the input and the target value
• For a single value, the loss function captures the difference between the predicted and the
true target value
• Cost Function is the loss function plus a regularization term
→ find the parameters which minimize the cost function
• Empirical risk minimization: we are trying to minimize the risk on the sample set
o If the risk is represented by MAE:
o calculate average difference between
estimated cost function and the true cost
function → minimize that one
• ̂
𝑓 (𝑥) can be a linear function or more complex (polynomial function). The higher the power,
the more complex the model.
o If 𝑓̂(𝑥) = 𝜃𝑥 + 𝑐 (linear):
o Use training and validation data to find hyperparameter theta and power
• Optimal solution minimizes the loss between 𝑓(𝑥) and 𝑓̂(𝑥)
• Use a polynomial function for more complex relationships
• A higher power p implies higher degree of freedom = flexibility
• Use cross validation to find the best hyperparameter p

Regularization




• Add lambda as regularization term to the cost function to regulate theta to avoid overfitting
o Large value of lambda reduces the size of theta term and overfitting since a simpler
model is assumed

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hannahgruber Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
101
Lid sinds
3 jaar
Aantal volgers
63
Documenten
9
Laatst verkocht
6 dagen geleden

4,3

8 beoordelingen

5
5
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen