100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Overzichtelijke samenvatting van statistiek 1 t/m 3 (stat 3 tentamen)

Beoordeling
-
Verkocht
12
Pagina's
51
Geüpload op
27-03-2022
Geschreven in
2022/2023

Een overzichtelijke samenvatting van alle stof voor het tentamen voor statistiek 3. Gebaseerd op hoorcolleges van statistiek 1, 2 en 3. En per toets /analyse samengevat met een voorbeeld er bij, bijbehorende formules en handige tabellen om meer overzicht te krijgen! Ook zit hier een compleet overzicht van alle assumpties bij die je moet kennen per analyse.

Meer zien Lees minder













Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 maart 2022
Aantal pagina's
51
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistiek 1 t/m 3

Univariaat: 1 specifieke variabelen, meten van spreiding/centrummaten/BI berekenen,
significantietesten gemiddelde/proportie, verschillen tussen groepen

Bivariaat: 2 variabelen (associatie): voorspellende/onafhankelijke x en uitkomst/afhankelijke
y.


Verschillen tussen 2 groepen
(kwantitatieve) kan op 3 manieren:
1. Onafhankelijke t-test
2. OLS bivarate regressie
3. 1 factor ANOVA




1

,Inhoudsopgave

Inleiding .......................................................................................................................................................... 3

P-waardes ........................................................................................................................................................ 4

Type 1 en 2 fout en betrouwbaarheid.............................................................................................................. 5

Kansverdeling ................................................................................................................................................. 6

T-score voor gemiddelde (kwa, Y) ................................................................................................................. 7

T-toets voor voor 2 gemiddelden (kwa y, cat X) ............................................................................................. 8

z-score voor proporties ................................................................................................................................... 9

t-verdeling & z-verdeling .............................................................................................................................. 10

Sensititviteit, specificiteit, etc ........................................................................................................................ 10

Chi-kwadraat (cat y, cat x) χ2-statistic .......................................................................................................... 11

Enkelvoudige lineaire regressive (kwant y, kwant x) = simpele lineaire regressie = Bivariaat ................... 12

Verbanden ..................................................................................................................................................... 14

Meervoudige lineaire regressie ..................................................................................................................... 15

Regressie met kwadratisch effect .................................................................................................................. 18

Eenwegs-ANOVA (2 of meer groepen) (1 Cat X, 1 kwant y) ...................................................................... 18
Tussen groepen Eenwegs-ANOVA ................................................................................................................... 18
Herhaalde metingen ANOVA (binnengroepen) ................................................................................................ 22
Herhaalde metingen binnengroep ANOVA (stat 3) .......................................................................................... 23
Anova → lineaire regressie met dummy variabelen (Stat2) ............................................................................. 26
Anova → (enkelvoudige) lineaire regressie met dummy variabelen (Stat3) .................................................... 27
Anova → (meervoudige) lineaire regressie met dummy variabelen (Stat3) ..................................................... 29

Factoriële Anova (FANOVA) (2 of meer Cat X, 1 kwant y) ......................................................................... 30
Eenwes -anova of factoriele/twee-wegs anova: ........................................................................................... 34

ANCOVA / FANCOVA (stat 3) .................................................................................................................... 35

Regressie vs AN(C)ova .................................................................................................................................. 37

Moderatie en Mediatie (stat 3) ...................................................................................................................... 37
Moderatie (interactie) ...................................................................................................................................... 38
Mediatie............................................................................................................................................................ 40

MANOVA (Stat3) ......................................................................................................................................... 43

OLS Bivariate regressie ................................................................................................................................ 46



2

, Residuen plots .................................................................................................................................................. 47

Assumpties: ................................................................................................................................................... 47
Onafhankelijke steekproef t-test .................................................................................................................. 47
Assumpties bivariate regressie (enkelvoudige regressie 2 variabelen) ........................................................ 47
Regressie model: ......................................................................................................................................... 47
Assumpties van eenwegs-anova: ................................................................................................................. 47
Assumpties van herhaalde metingen ANOVA: ........................................................................................... 48
Assumpties van factoriële-anova FANOVA: .............................................................................................. 48
Assumpties van ANCOVA .......................................................................................................................... 48
Assumpties MANOVA................................................................................................................................ 49
Assumptie van gelijke variantie = homoscedasticiteit → Levene’es test: ................................................... 49
Assumptie van orthogonaliteit → chi-kwadraat toets................................................................................. 49
Assumptie van normaal verdeelde Y → kolmogorov smirnov ..................................................................... 49
Assumptie van multicollineariteit → VIF ................................................................................................... 49

Tabellen ......................................................................................................................................................... 50



Inleiding

Statistiek = de wetenschap van het verzamelen, organiseren en interpreteren van numerieke
feiten (data)
- Beschrijvende statistiek: range, doelgroep. Er is geen onzekerheid over
o Range: discreet (broers/zussen) en continu (oneindig deelbaar)
- Inferentie statistiek: generaliseren (=onzekerheid), voorspellingen maken over de
populatie, gebaseerd op de steekproef.
o Problemen: steekproef error (natuurlijke/willekeurige sampling variatie),
steekproef bias (selectieve deelname/vrijwillig/undercoverage), responsbias
(onjuist antwoord), non-responsbias (selectieve deelname).

Steekproefmethoden:
1. Enkelvoudig a selecte steekproef
Stel steekproefkader vast, willekeurige steekproef trekken. (Geef alle mensen een
random nummer, en trek random nummers bijvoorbeeld).

2. Systematische aselecte steekproef
Stel steekproefkader vast, bepaal steekproef grootte = K = N / n = steekproef. Bijv k =
5 dan steekproef = 5, 10, 15, 20

3. Gestratificeerde steekproef
Stel steekproef kader vast, populatie verdelen in stratum (bijv geloof). Aselect uit
iedere stratum trekken. Disproportioneel of proportioneel met de populatie. Dus je
kiest uit een aantal categorieën een aantal mensen.

4. Cluster steekproef
Stel een steekproef kader vast (bv alle scholen in NL). Verdelen in clusters (bv
bepaald aantal scholen per provincie). Aselect een aantal clusters trekken.
- Alle scholen in Nederland → alle scholen in Amsterdam

5. Getrapte steekproef (multistage sampling)



3

, Alles wat hierboven staat, maar dan ook nog van die scholen aselect een aantal
leerlingen trekken. Bijvoorbeeld alle scholen in NL → alle scholen in Amsterdam
- Van HLZ, Amsterdams, etc een paar mensen

Centrummaten:
Gemiddelde: mean (gelijk met mediaan en modus bij normaalverdeling). Gaat naar de staart
bij een scheve verdeling en is gevoelig voor outliers
Mediaan: middelste getal → bij oneven aantal = middelste getal, bij oneven aantal =
gemiddelde van middelste getal. En is ongevoelig voor outliers
Modus: meest voorkomende waarde en is ongevoelig voor outliers

Positiematen:

Als je een outlier verwijderd trekt
het gemiddelde altijd meer naar de
kant van de outlier toe




Normaalverdeling: Wordt smaller met een grotere N

Steekproevenverdeling = kansverdeling op alle mogelijke waarde van de
steekproefgrootheid

Beschrijving van data variabiliteit (dispersie)
• Range (verschil tussen max en min)
• Deviatie (yi − y ̄)
2
• Kwadratensommen Σ(yi − y ̄) .
• Variantie: S^2 = Σ(yi −y ̄)2 / n−1
• Standaard deviatie: S = de wortel van
Σ(yi −y ̄)2 / n – 1
o N-1 omdat we niet weten hoe
groot de populatie is als we dit wel weten is het gewoon n
• Standaarddeviatie van de steekproevenverdeling = standaarderror = S / wortelN
• Standaardfout = verschil tussen steekproefgrootheid van meerdere steekproeven en
heeft altijd minder spreiding dan de verdeling waaruit de steekproef getrokken is (sd).

P-waardes
- P < 0.05 → kleiner dan het significantieniveau
o De kans dat we bepaalde resultaten vinden, wanneer de 0 hypothese waar is.
- P < 0.05 bij een z-toets → proporties verschillen significant van elkaar
- P < 0.05 bij een t-toets bij een gepaarde waarneming → gemiddelden binnen een
groep verschillen significant van elkaar
- P < 0.05 bij een chi-kwadraat toets → de waarnemingen zijn afhankelijk van elkaar.




4

, - P < 0.05 bij een meervoudige regressie → tenminste 1 van de regressiecoëfficient die
afwijkt van 0, dus tenminste 1 predictor van Y
- P < 0.05 bij een eenwegs ANOVA → een gemiddelde verschilt
- P < 0.05 bij en twee-wegs ANOVA → een gemiddelde verschilt
- P < 0.05 bij een ANCOVA → gemiddelden verschillen wanneer we controleren voor
de covariaat.

5 stappen van hypothese testen:
1. Aannames definiëren
2. Stel hypothese op
3. Bereken teststatistiek (bijv. t-waarde)
4. Bepaal p-waarde
5. Conclusie trekken

Exploratief onderzoek: op basis van significantie. Doel is predictie, niet inhoudelijke
verklaring het is data gedreven
1. Backward: begint met alle predictoren en minst significante variabele uit het model,
totdat er alleen significante over zijn.
2. Forward. Eerste predictor heeft hoogte correlatie met R. daarna steeds met hoogste
partiële r/kleinste p-waarde
3. Stepwise: zelfde als forward maar ook kijken of reeds geselecteerde predictoren
overbodig zijn
Confirmatief: selectie op basis van theorie
1. Ongeordend: welke meer verklaart
2. Geordend: op basis van volgorde in tijd bijvoorbeeld

Handig:
- Wat we willen weten:
MSbetween = wat we wel verklaren door het model
→ dit is bij je regressie je: Regression
- wat de error is:
MSwithin = wat we niet kunnen verklaren door het model
→ dit is bij regressie je Residual


Type 1 en 2 fout en betrouwbaarheid

Betrouwbaarheid (error) = als ik herhaaldelijk afneem, heb ik dan hetzelfde (is 95% bij een
alpha van 0.05)
- Het gaat om precisie meet ik elke keer hetzelfde
- De standaarderror moet klein zijn en de steekproef representatief
- Een meting kan betrouwbaar zijn maar niet valide
Valide (bias) = is het representatief voor de populatie, het gaat over bias.
- Een meting kan niet valide zijn als het niet betrouwbaar is.

Type 1 fout: onterecht verwerpen
- Wordt bepaalt door het gekozen significantieniveau (alpha)
- Is alpha = de kans dat h0 ten onrechte verworpen wordt
- Als alpha kleiner wordt → kans op type 2 fout groter



5

, - Hoe kleiner de alpha → hoe kleiner de kans op een type 1 fout → hoe groter de kans
op type 2 fout → hoe lager de power
- Grotere N heeft geen invloed op de kans op een type 1 fout

Type 2 fout: onterecht niet verwerpen
- is hetzelfde als beta
- wordt bepaald door effectgrootte, N, Variantie.
- 1 – type 2 fout = de power/ß
- Type 2 fout groter → beta neemt toe → power wordt minder
- Hoe kleiner alpha → hoe groter de kans op een type 2 fout
- Grotere N heeft wel een invloed op de kans op een type 2 fout

Power hangt af van:
- Alpha niveau (hoe hoger hoe minder power)
- Grootte N
- Verwachte effectgrootte
-

→ we kiezen een kritieke grens

Blauwe vlakje is: verwerpingsgebied, α, type 1
fout, significantieniveau, vals positief. We
verwerpen de 0 hypothese ten onrechte.

oranje vlakje: type 2 fout,
witte vlakje naast oranje: power




Betrouwbaarheidsinterval de breedte:
- Neemt toe als de betrouwbaarheid stijgt en je strenger wilt zijn
- Neemt af als je beter kan schatten → informatiever
- Neemt af als de steekproef groter wordt, omdat je dan beter kan schatten
- Is kleiner bij 1 enkele schatting dan bij meerdere schattingen
- Neemt af als je een grotere N hebt → dan kan je beter schatten
- Is kleiner van een enkele schatting dan bij meerdere vergelijkingen

BI van 95%:
- Met 100% ligt het steekproefgemiddelde in dit interval
- Maar er is een kans van 5% dat het interval de parameter (populatie) niet bevat
- Is het gemiddelde + foutenmarge

Een VS tweezijdig toetsen:
- Eerder verwerpen bij eenzijdig omdat de kritieke grens dan dichter bij 0 zit.
- maar tweezijdig toetsen is conservatiever, zorgt ervoor dat je minder snel een effect
vindt, je bent strenger.

Kansverdeling
Kansverdeling


6

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
catharinavandedem Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
121
Lid sinds
8 jaar
Aantal volgers
98
Documenten
0
Laatst verkocht
5 maanden geleden

4,0

12 beoordelingen

5
4
4
4
3
4
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen