100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary week 5-6 Econometrics 2 UvA

Beoordeling
5,0
(1)
Verkocht
-
Pagina's
5
Geüpload op
20-02-2022
Geschreven in
2020/2021

Summary of the course materials week 5-6 Econometrics 2 UvA.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Parts of chapter 6
Geüpload op
20 februari 2022
Aantal pagina's
5
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Week 5+6: paragraaf 6.3
Limited depesdert variable Graphical illustraties truncation


These a re
quantitave ,
continuous variable s het
yi
"
=
Xi +
Ei ,
Ei ~
NID ( 0,1 ) .
In general ,




with out comes that are restricted in some for a
given value of Xi ,
the density is



truncated at the value ✗i
In truncated the observations
as
yi only
samples
-




wa .

,


*
ob Served If y
_




> 0 =) Ei > -


Xi The
be obtained from Limited part ,
.




can only a


truncation effect is
large for small Values
of the undvlying population . Model s
where

and small large value of
the
of Xi for Xi
possible observed outcomes outccmes


truncated standard normaal
Limited to interval called





are an are f

censor ed samples .




a model
for truncated data
I
' '
-2
-1 I
We can sides the situation whee the truncation


is
from below with known truncation point .
Truncated density of the e r ro r terms


It assumed that the truncah.cn point is the truncation
is we
analyse effect of on



' * '

which be achieved b P
*

always p
-

Zero , can =
xi + 5 Ei
y
=
xi + Ei
yi
_




,


0 5

in deviation the known
measuring yi from
" '

yi only ob Served if yi
> 0
,
so Ei > -
✗ i P .




truncation pcint . We Write the model as (o ) or




XÍB complete b
"
+
OEI Ei IID E- [ Ei ] 0 We CDF F
yi
= ~ =
, ,




Ei is an e r ro r term with known symmetrie
{ }
' '
P E t P TE
*
Ei Ei > xi o
if ✗ c. P
- -
=




5
and continuous density f .
The Scale
factor
5




convenant
5 is as b extracting 5 we


/ ] [ ]
' '
* P ziet Ei > xi P P xi /310 < ziet
- -
=




that the
5 PE Ei > Xi
'

1310 ]
density f of the
-




aan now a ss u m e




( n or m ali te r ) Ei is
completely known
F (t) FC '
)
.




=
- -




✗i 310
/
Flxi > Plo )
the model
We assume the data satisfies ,


'
t > P /
if Xi 0

y :*
-




but to are not do Served .




" ' "
This gives trvncated density
yi
=

yi
=
✗i P + •
Ei if i
>0


( t)
'
fi 0
if te ✗ i. Plo
-
=
*
obseved ⇐ 0
yi
not if yi
f- i ( t ) f- ( t ) Plo
'
t
=
íf > xi
-




FLXÍPIO )

so the truncated of
density Ei is


'
'
to with
proportioneel the right part
'
The
t > ✗i 1315 of the
origin at
density f
-




.




b FC 1315 )
'


scoring is Needed to
✗i get

ffiltldt =/ .




S. Veeling

ijijij ij

, Estimation likelihood Tobit model censored data
b maximum for

consistent estimates of B are obtained b Dependent variable is called censored when

ml For the norman distribution we
get the cannot tahe values below
,
response or
.




pl i ) 0 / ( / ) Is )
3
'

xi
g- i
-
=


above a certain threshold the tobit model
⑤ ( xi 310
'
)
.




/

relaties obseved outcomes zo to an
as truncated density .
yi
"

by of
'
as Observations
yi
a re assumed to be index function yi
=
×:
p + 5 Ei means


'

nvutually independent
" "
,
we
get yi
=
yi
=
xi p + • Ei if yi
> 0




log ( L) =

log ( ply , ,
. .
.
, yn ) ) =

Ê ,
109 ( Plyi ) )
yi
= o
if yi
*
Eo



and have
with Scale parameter a
log Co2 )
a a {i
log 4) log (z i t )
-12 f-
= -




know symmetrie density f- with E [ Ei] =
0 .




'
-




÷ È
( yi -
xi
'
/3 )
-




Én log ( ¢ ( xi
>
Plo ) ) In the tcbit model ,
we
usvall Choose


¢ and F- OI
f-
= =
.




The last term comes in addition to the usual

In the truncated model only
"
> o whee
OLS terms and is called the truncation yi
,




obseved whereas in the cessored model
effect .
That term is non -
linear in Band 5



it assumed that response s
integration
is



yi-ocorresponding.to
so we need numerical to sake this .




"
to are also obseved
yi
Marginat effects in trvncated modus
and that values of Xi for such
Parameters P Measure the ME E- [ ]
on
y
observations a re known .




of the explanatory variable s × in the
The tobit model can be seen as a

population .
Therefore they a re
of interest

variaties of the
probit model ,
with a re

for cut -

of -

sample predictions ,
so to estimate

discrete option ( gia ) and whose the
effects for vnabseved
y C- 0 . If we a re



option S u c c e ss is
replaced by the
interest ed in within -


sample effects ,
so in


continuous variable > 0
the trvncated population with
"
then yi .




yi > 0
,




for the nor man distribution the ME are

Graphical
illustrations
[ yil i
E- ] ( Ai Plo B
"
> o = i -
-
✗ ixi
'
)
2x ; If we would simply apply OLS on a



with Ai = E [ Ei
lyi
"
> o ] =
¢ (x : Plo ) >
>0 cersored yi ,
we get inconsistent estimators

☒ Lxi 310
/ ) '

'
as E- [ yi] =/ Xi p .




The correctie term for P lies in (a ,
i )

The ME i n the d-
and is equal for an xi .




E
0
Ò
truncated population clases to than
o
a re ze ro




[
in the untruncated .




§
is


Ratios Bj / 13h continue to have the §
interpretation of the relative effect of I, I to I I to
and ✗
Xj ✗ in on the dependent variable and


untrvncated truncated 17 Xi 0 in
"

Xi + Ei then P[ ]
yi
=

equal for and
= =
a re .
yi ,




P [ Ei to ] =
0,5 and
yi > o have Standard normal



density .




yi
< a is not possible .




S. Veeling
s­ij ijijij ij

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

2 jaar geleden

Thanks and good luck with the course!

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
SuusV Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
64
Lid sinds
4 jaar
Aantal volgers
42
Documenten
11
Laatst verkocht
10 maanden geleden

4,9

10 beoordelingen

5
9
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen