100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Formulas Statistics (Managerial Statistics - G. Keller) Formuleblad for exam

Beoordeling
5,0
(1)
Verkocht
10
Pagina's
19
Geüpload op
07-04-2015
Geschreven in
2015/2016

Formuleblad van diverse statistische formules afkomstig uit het boek Managerial Statistics (9th edition) van Gerald Keller. Zie de voorbeeldpagina's van de inhoudsopgave voor een overzicht van alle formules in dit formuleblad.














Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
7 april 2015
Bestand laatst geupdate op
8 april 2015
Aantal pagina's
19
Geschreven in
2015/2016
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary
Z Test ....................................................................................................................................................... 3
Assumptions - Test statist for μ when σ is known .................................................................................. 3
Z test statistic for p (=proportion) ........................................................................................................... 4
T test / Student t statistic / one simple T test ........................................................................................ 5
F-test (to test population variances) ....................................................................................................... 6
Independent t-test = 2T-test ................................................................................................................... 7
Paired simple T test / (T test and estimator of μD) .................................................................................. 8
Chi-Squared Goodness-of-fit Test Statistic (Nominal)............................................................................. 9
Chi-Squared test of a contingency table (Nominal) .............................................................................. 10
Wilcoxon Rank Sum Test (Data is ordinal or interval – nonparametric / Independent samples) ......... 11
Wilcoxon Signed Rank Sum Test (Data is interval – nonparametric / Matched Pair) ........................... 12
Sign test (Binomial matched pair) ......................................................................................................... 13
Spearman Rank Correlation Coefficient (Ordinal or Interval – Nonparametric)................................... 14
Regression analysis (multiple and single) .............................................................................................. 15
Pearson coefficient of correlation (normal Interval)............................................................................. 17
Multiple regression testing the validity................................................................................................. 18
Multiple regression testing the Coefficients (β0, β1, β2, etc.) ................................................................ 19




1 1

,2 2

, Z Test

Hypotheses
H0 = μ = the mean is equal to ..(invullen wat in de tekst staat…)
H1= μ = the mean is <>≠(invullen wat in de tekst staat)

Test Statistic
Test statistics Degrees Confidence Rejection p-value
of interval region
freedom
Right P(Z>…) = 1-
None P(Z< …)

Left P(Z< …) =

Note: zα/2
by a 2- Different 2P(Z>…) =
tailed 2* 1-P(Z<…)
test! =…


Computations
1. Look up the rejection region in table 3 (veld).
2. Do the test statistic
3. Draw a picture




Interpret
If the computed z-value falls in the rejection region we can reject the H0. So we do have enough
evidence to reject the null hypothesis. We assume that … (repeat H1 in words).

If the computed z-value is falls outside the rejection region we cannot reject the H0. We do not have
enough evidence to reject the null hypothesis. We assume that … (repeat H0 in words).

Assumptions
- Test statist for μ when σ is known

Interpretation confidence interval
If we repeatedly draw samples of sizes … (n) from the population of … , 95% of differences between
… and … would lie between … (LCL) and … (UCL)



3 3

, Z test statistic for p (=proportion)

Hypothesis
H0 : p = .5
H1 : p = </>/≠ .5



p = the proportion of (……)

Test statistic
Test statistics Degrees of Confidence interval Rejection p-value
freedom region
zα,n Right P(Z>…) =
None 1-P(Z<
…)
-zα,n Left P(Z< …)
=
Note: Different 2P(Z>…)
zα/2 by a =
2-tailed 2* 1-
test! P(Z<…) =



Computations
1. Look up the rejection region in table 3.
2. Fill in the formula for .
2. Fill in the formula.
3. Draw a picture




Interpret
If the computed z-value falls in the rejection region we can reject the H0. So we do have enough
evidence to reject the null hypothesis. We assume that We assume that … (repeat H1 in words).

If the computed z-value falls outside the rejection region we cannot reject the H0. We do not have
enough evidence to reject the null hypothesis. We assume that … (repeat H0 in words).

Interpretation confidence interval
If we repeatedly draw samples of sizes … (n) from the population of … , 95% of differences between
… and … would lie between … (LCL) and … (UCL)

4 4

, T test / Student t statistic / one simple T test

Hypothesis
H0 = μ = (invullen wat in de tekst staat…)
H1= μ = <>≠(invullen wat in de tekst staat)

μ = the mean of ……

Test Statistic
Test statistic Degrees of freedom Confidence interval Rejection region
tα,v
v=n–1 α = table 4.


Computations
1. Look up the rejection region in table 4
2. Do the test statistic
3. Draw a picture




Interpret
If the computed t-value falls in the rejection region we can reject the H0. So we do have enough
evidence to reject the null hypothesis. We assume that … (repeat H1 in words).

If the computed t-value is falls outside the rejection region we cannot reject the H0. We do not have
enough evidence to reject the null hypothesis. We assume that … (repeat H0 in words).

Assumptions
- Test statist for μ when σ is unknown
- Population = normal
- Data: interval/ ratio
- Doel: test population mean  je vergelijkt een steekproefgemiddelde met een theoretisch
gemiddelde.

Interpretation confidence interval
If we repeatedly draw samples of sizes … (n) from the population of … , 95% of differences between
… and … would lie between … (LCL) and … (UCL)




5 5

, F-test (to test population variances)

Hypothesis
H0 :
H1 :




Test statistic
Test statistics Degrees of freedom Confidence interval Rejection region

F>
V1 = n1 – 1
V2 = n2 – 2
F<




Computations
1. Look up rejection region in table 6
2. Fill in the formula
3. Draw a picture




Interpret
If the computed F-value falls in the rejection region we can reject the H0. So we do have enough
evidence to reject the null hypothesis. We assume the population variances to be different.

If the computed F-value falls outside the rejection region we cannot reject the H0. We do not have
enough evidence to reject the null hypothesis. We assume the population variances to be equal.

Interpretation confidence interval
If we repeatedly draw samples of sizes … (n) from the population of … , 95% of differences between
… and … would lie between … (LCL) and … (UCL)




6 6

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
5 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
88Steven88 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
167
Lid sinds
11 jaar
Aantal volgers
120
Documenten
2
Laatst verkocht
1 jaar geleden

4,0

22 beoordelingen

5
12
4
3
3
4
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen