100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting Quantative Methods

Beoordeling
-
Verkocht
-
Pagina's
34
Geüpload op
24-10-2021
Geschreven in
2021/2022

Samenvatting van 34 pagina's voor het vak Process improvement Healthcare aan de UvA (Quantative Methods)












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
24 oktober 2021
Aantal pagina's
34
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Summery exam QM 21
Numerical (quantitative) data:
Real valued or whole numbers: 85.3 graden Celcius, 2.12mm (dimension), 14 (counts).
- Interval data: order, addition and subtraction will have well-defined meaning. Example:
temperature in Celcius.
- ratio data: order, addition and subtraction, but also multiplication and division have meaning. There
is a meaningful zero point. Example: temperature in Kelvin.

Categorical (qualitative) data:
Subtraction and addition have no meaning.
- Ordinal data (order): there is a well-defined order among categories. Example: good, acceptable,
critical, reject.
- Nominal data: unordered categories; merely labels. Example: type XO, MM, SW, LS.
- Binary data: Example: pass/fail, positive/negative, ok/nok.

Numerical data contain more information than categorical data.

Operational definitions
14% of the trains is delayed. This percentage has to be reduced. How did NS measure this
percentage?
Before we can study the phenomenon “trains are delayed”, we need give this term a precise
definition. We call this: the operational definition of the problem. An operational definition specifies
which actions (measurements) should be done to determine whether a train is delayed or not.
Operational definitions are always arbitrary to some extent: the correct definition does not exist.

Describing data
Numerical (quantitative) data:
 descriptive statistics: mean, standard deviation, skewness
 Histogram, boxplot, scatterplot
 Percentiles such as median and quartiles
 distributions




Skew = measure of asymmetry. Skewness of 0 implies a symmetrical distribution.
 Positive skew (scores bunched at low values with the tail pointing to high values (left).
 Negative skew (scores bunched at high values with the tail pointing to low values (right).



1

,Boxplot (Box-Whisker Diagram)
A boxplot is composed of:
 The median of the data
 a box: indicates the ‘bulk’ of the data. Ranges from Q1 to Q3.
 ‘wiskers’: indicate the tails of the distribution. Extend from the
box to the last value within 1.5 times the length of the box
 outliers

Categorical (qualitative) data:
 Frequency tables, mode (most frequent outcome), median (only for ordinal data; middle
outcome)
 Bar charts or pie charts
Bimodal: Having two modes & Multimodal: having several modes




Sample vs. Population
With data from a sample, we can estimate the underlying population
parameters location and spread. The blue histogram gives the
distribution of the values in the sample, with mean and standard
deviation. The red curve is an estimation (“fitted”) population
distribution, with two parameters population mean and population
standard deviation.




2

,Confidence interval
Results from sample is an estimate, which is subject to some
inaccuracy. We can calculate two boundaries in between
which the sought characteristics lies with 95% confidence.
These boundaries mark the confidence interval. The larger
the sample, the more accurate our estimate, the smaller our
confidence interval.

Formulas for confidence interval on the mean (assuming a
normal distribution):




Formulas for confidence interval on the variance (assuming a normal distribution):




Measurement validity
Strategies to assess measurement validity.
Beforehand:
 Devil’s advocate brainstorming
 Check definitions and calculations
 Do a test measurement
During data collection: Monitor the measurement process
After data collection:
 Face validity of the data: Judge the dataset based on common sense.
 Autopsies: One could investigate strange or unexpected data patterns or observations.

Sampling error
Difference between the sample statistic and the population parameter that exists only because we
consider a part of the population (the sample) and not the whole population.
 The larger the sample size, the smaller the sampling error.

Measurement error (nonsampling error)
The discrepancy between the actual value we’re trying to measure, and the number we use to
represent that value. Does not go away with sample size.

Systematic measurement error
Difference between the average measurement result and the true value.
Examples:
 NMI calibrates pumps at gas station at a yearly basis
 Clocks on mobile phones are regularly synchronized with online
time servers.

Random measurement error




3

, Unsystematic deviations due to imprecision of the measurement system. Example: for ice skating at
the winter Olympics, multiple time measurements systems are used.

Collecting data
Why sampling?  “Better precise information of a part of the population, then vague information of
the whole population”.
The sample has to be representative. To this extent: the sample should be based on a mechanism
that is independent of the question. Always use a computer to draw random numbers.

Simple random sampling
Use a chance mechanism to select items. Each item in the population has equal chance of being
selected. Number all items in the population 1, 2, …, N. Use Minitab to draw a random sample of n
items out of N. Without replacement: each item can be selected only once.

Systematic sampling
Use a rule to select a sample. For example:
 Order all items and select each 100th item.
 Select all persons whose name starts with an S.
 Collect an item from a production process every 30 minutes.
Be careful that the rule is not correlated with the question of the study!

Stratified sampling
The population can be divided into subpopulations (strata)
that differ from each other in mean and/or variance.

Inhomogeneous population  large sample size?
Solution: stratified sample

1. Divide the population into homogeneous parts
(strata)
2. Take a sample from every stratum
3. Combine the resulta of the strata to a result for the whole population

Normal distribution
If a random variable X has a normal distribution with mean ц and
standard deviation Ó, then we write . A normal
distribution with mean 0 and standard deviation 1 is called the

standard normal distribution: .

Normal (Gaussian) distributions are symmetrical.

Weibull distribution: is skewed.
Shape parameter: ß and scale parameter: n

Properties of the normal distribution:




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
aqua03 Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
378
Lid sinds
9 jaar
Aantal volgers
232
Documenten
89
Laatst verkocht
1 week geleden

Graag een review achterlaten, grazi mille:)

3,8

91 beoordelingen

5
25
4
40
3
19
2
1
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen