100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Kansrekening en statistiek Antwoorden

Beoordeling
-
Verkocht
-
Pagina's
100
Geüpload op
08-02-2015
Geschreven in
2004/2005

Lecture notes of 100 pages for the course Kansrekening en Statistiek at TU Delft











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
8 februari 2015
Aantal pagina's
100
Geschreven in
2004/2005
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Voorbeeld van de inhoud

29

A Modern Introduction to Probability and
Statistics




Full Solutions
February 24, 2006




©F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester

,458 Full solutions from MIPS: DO NOT DISTRIBUTE

29.1 Full solutions
2.1 Using the relation P(A ∪ B) = P(A)+P(B)−P(A ∩ B), we obtain P(A ∪ B) =
2/3 + 1/6 − 1/9 = 13/18.
2.2 The event “at least one of E and F occurs” is the event E ∪ F . Using the
second DeMorgan’s law we obtain: P(E c ∩ F c ) = P((E ∪ F )c ) = 1 − P(E ∪ F ) =
1 − 3/4 = 1/4.
2.3 By additivity we have P(D) = P(C c ∩ D)+P(C ∩ D). Hence 0.4 = P(C c ∩ D)+
0.2. We see that P(C c ∩ D) = 0.2. (We did not need the knowledge P(C) = 0.3!)
2.4 The event “only A occurs and not B or C” is the event {A ∩ B c ∩ C c }. We
then have using DeMorgan’s law and additivity

P(A ∩ B c ∩ C c ) = P(A ∩ (B ∪ C)c ) = P(A ∪ B ∪ C) − P(B ∪ C) .

The answer is yes , because of P(B ∪ C) = P(B) + P(C) − P(B ∩ C)
2.5 The crux is that B ⊂ A implies P(A ∩ B) = P(B). Using additivity we obtain
P(A) = P(A ∩ B) + P(A ∩ B c ) = P(B) + P(A \ B). Hence P(A \ B) = P(A) − P(B).
2.6 a Using the relation P(A ∪ B) = P(A) + P(B) − P(A ∩ B), we obtain 3/4 =
1/3 + 1/2 − P(A ∩ B), yielding P(A ∩ B) = 4/12 + 6/12 − 9/12 = 1/12.
2.6 b Using DeMorgan’s laws we get P(Ac ∪ B c ) = P((A ∩ B)c ) = 1 − P(A ∩ B) =
11/12.
2.7 P((A ∪ B) ∩ (A ∩ B)c ) = 0.7.
2.8 From the rule for the probability of a union we obtain P(D1 ∪ D2 ) ≤ P(D1 ) +
P(D2 ) = 2 · 10−6 . Since D1 ∩ D2 is contained in both D1 and D2 , we obtain
P(D1 ∩ D2 ) ≤ min{P(D1 ) , P(D2 )} = 10−6 . Equality may hold in both cases: for
the union, take D1 and D2 disjoint, for the intersection, take D1 and D2 equal to
each other.
2.9 a Simply by inspection we find that
A = {T T H, T HT, HT T }, B = {T T H, T HT, HT T, T T T },
C = {HHH, HHT, HT H, HT T }, D = {T T T, T T H, T HT, T HH}.
2.9 b Here we find that Ac = {T T T, T HH, HT H, HHT, HHH},
A ∪ (C ∩ D) = A ∪ ∅ = A, A ∩ Dc = {HT T }.
2.10 Cf. Exercise 2.7: the event “A or B occurs, but not both” equals C = (A∪B)∩
(A ∩ B)c Rewriting this using DeMorgan’s laws (or paraphrasing “A or B occurs,
but not both” as “A occurs but not B or B occurs but not A”), we can also write
C = (A ∩ B c ) ∪ (B ∩ Ac ).
2.11 Let the two outcomes be called 1 and 2. Then Ω = {1, 2}, and P(1) = p, P(2) =
p2 . We must
√ have P(1) + P(2) = √P(Ω) = 1, so p + p2 = 1. This has two solutions:
p = (−1 + 5 )/2 and√ p = (−1 − 5 )/2. Since we must have 0 ≤ p ≤ 1 only one is
allowed: p = (−1 + 5 )/2.
2.12 a This is the same situation as with the three envelopes on the doormat, but
now with ten possibilities. Hence an outcome has probability 1/10! to occur.
2.12 b For the five envelopes labeled 1, 2, 3, 4, 5 there are 5! possible orders, and
for each of these there are 5! possible orders for the envelopes labeled 6, 7, 8, 9, 10.
Hence in total there are 5! · 5! outcomes.

, 29.1 Full solutions 459

2.12 c There are 32·5!·5! outcomes in the event “dream draw.” Hence the probability
is 32 · 5!5!/10! = 32 · 1 · 2 · 3 · 4 · 5/(6 · 7 · 8 · 9 · 10) = 8/63 =12.7 percent.
2.13 a The outcomes are pairs (x, y).

a b c d
The outcome (a, a) has probability 0 to
1 1 1
occur. The outcome (a, b) has probability a 0 12 12 12
1 1 1
1/4 × 1/3 = 1/12 to occur. b 12
0 12 12
1 1 1
The table becomes: c 12 12
0 12
1 1 1
d 12 12 12
0

2.13 b Let C be the event “c is one of the chosen possibilities”. Then C =
{(c, a), (c, b), (a, c), (b, c)}. Hence P(C) = 4/12 = 1/3.
2.14 a Since door a is never opened, P((a, a)) = P((b, a)) = P((c, a)) = 0. If the can-
didate chooses a (which happens with probability 1/3), then the quizmaster chooses
without preference from doors b and c. This yields that P((a, b)) = P((a, c)) = 1/6.
If the candidate chooses b (which happens with probability 1/3), then the quizmas-
ter can only open door c. Hence P((b, c)) = 1/3. Similarly, P((c, b)) = 1/3. Clearly,
P((b, b)) = P((c, c)) = 0.
2.14 b If the candidate chooses a then she or he wins; hence the corresponding
event is {(a, a), (a, b), (a, c)}, and its probability is 1/3.
2.14 c To end with a the candidate should have chosen b or c. So the event is
{(b, c), (c, b)} and P({(b, c), (c, b)}) = 2/3.
2.15 The rule is:

P(A ∪ B ∪ C) = P(A)+P(B)+P(C)−P(A ∩ B)−P(A ∩ C)−P(B ∩ C)+P(A ∩ B ∩ C) .

That this is true can be shown by applying the sum rule twice (and using the set
property (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)):

P(A ∪ B ∪ C) = P((A ∪ B) ∪ C) = P(A ∪ B) + P(C) − P((A ∪ B) ∩ C)
= P(A) + P(B) − P(A ∩ B) + P(C) − P((A ∩ C) ∪ (B ∩ C))
= s − P(A ∩ B) − P((A ∩ C)) − P((B ∩ C)) + P((A ∩ C) ∩ (B ∩ C))
= s − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C) .

Here we did put s := P(A) + P(B) + P(C) for typographical convenience.
2.16 Since E ∩ F ∩ G = ∅, the three sets E ∩ F , F ∩ G, and E ∩ G are disjoint.
Since each has probability 1/3, they have probability 1 together. From these two
facts one deduces P(E) = P(E ∩ F ) + P(E ∩ G) = 2/3 (make a diagram or use that
E = E ∩ (E ∩ F ) ∪ E ∩ (F ∩ G) ∪ E ∩ (E ∩ G)).
2.17 Since there are two queues we use pairs (i, j) of natural numbers to indicate
the number of customers i in the first queue, and the number j in the second queue.
Since we have no reasonable bound on the number of people that will queue, we
take Ω = {(i, j) : i = 0, 1, 2, . . . , j = 0, 1, 2, . . . }.
2.18 The probability r of no success at a certain day is equal to the probability
that both experiments fail, hence r = (1 − p)2 . The probability of success for the
first time on day n therefore equals rn−1 (1 − r). (Cf. Section2.5.)
€5,98
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
89
4,0
(1)

Maak kennis met de verkoper

Seller avatar
89 Technische Universiteit Delft
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
10 jaar
Aantal volgers
3
Documenten
12
Laatst verkocht
5 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen