100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Lectures Statistical Inference EOR 2020/2021

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
23-09-2021
Geschreven in
2020/2021

There isn't any required literature, so I only made a summary of the lectures that were given.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 september 2021
Aantal pagina's
9
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

Macroeconomics Summary
B.J.H. De Jong
September 23, 2021


Week 1
Lecture 1: The Likelihood Principle
A sample space is the set of all samples you could draw. Denoted by; Y. The parametric statistical
model (or parametric class) F is a set of pdf’s with the same given functional form, of which the elements
differ only by having different values of some finite-dimensional parameter θ.

F := {f (·; θ) | θ ∈ Θ ⊆ Rk } k<∞

The likelihood function for the parametric statistical model F is a function L : Θ → R+ , defined as the
following shows and it gives the density value of the data as a function of the parameter.
n
Y
L(θ; y) := c(y)f (y; θ) = c f (yi ; θ) (1)
i=1

Likelihoods for different samples are said to be equivalent if their ratio does not depend on θ. The notation
is L(θ; y) ∝ L(θ; z). I.e. if we can write: L(θ; y) = c(y, z)L(θ; z); where the function c does not depend on
the parameter.

Lecture 2: Sufficiency (35)
A statistic is a function T : Y → Rr , r ∈ N+ , such that T(y) does not depend on θ, with t = T(y) its
realization, or sample value. Some remarks about statistics: 1) A statistic can be multi-dimensional. 2) The
collection of order statistics is a statistic. 3) The likelihood function is ”not” a statistic, as it depends on the
parameter theta. 4) The maximum of the likelihood function can be a statistic. We do not want unnecessary
large statistic thus: For some F, a statistic T(y) is sufficient for θ if it takes the same value at two points
y, z ∈ Y only if y and z have equivalent likelihoods:

T (y) = T (z) =⇒ L(θ; y) ∝ L(θ; z) ∀θ ∈ Θ

We can also say: If T(y) is sufficient for θ, then it contains all the information necessary to compute the
likelihood. Notice that the ‘trivial’ statistic T(y) = y is always sufficient. Neyman’s factorization’s
Theorem: For some F, T (·) is sufficient for θ iff we can factorize:

f (y; θ) = h(y)g(T (y); θ). (2)

This also implies that a one-to-one function of a sufficient statistic is also a sufficient statistic. We could
also check sufficiency by showing that the conditional distribution f (y|T (y) = t)does not depend on θ. This
is not very much discussed.

For some F, a sufficient statistic T(y) is minimal sufficient for θ if it takes distinct values only at points
in Y with non-equivalent likelihoods:

T (y) = T (z) ⇐⇒ L(θ; y) ∝ L(θ; z) ∀θ ∈ Θ


1

, We can also say: the minimum amount of information we need to characterize the likelihood. This is
equivalent to the condition:
L(θ; y)
(3)
L(θ; z)
is free of θ iff T(y) = T(z).
For a statistic T(y) we can partition Y into subsets Yt , on which T(y) = t, where t is in the range of T(·).
We can also make a partitioning of Y using the notion of equivalent likelihood.


Week 2
Lecture 3: Exponential families (66)
A parametric family is said to be exponential of order r if its densities of an observation yj can be written as
r
!
X
f (yj ; θ) = q(yj )exp ψi (θ)ti (yj ) − τ (θ) (1)
i=1

where the ti (yj ) do not depend on θ and the ψi (θ) and τ (θ) do not depend on yj . If the exponential family
(1) is in reduced form, then T = (t1 (y), ..., tr (y)) is minimal sufficient for θ.

An exponential family is regular if:
1. The parameter space Θ is natural, i.e.
(Z r
! )
X
Θ= q(y)exp ψi (θ)ti (y) dν(y) < ∞
Y i=1


2. dimΘ = k = r, the dimension of the minimal sufficient statistic.
3. The function θ 7→ ψ(θ) = (ψ1 (θ), ..., ψr (θ)) is invertible
4. The functions ψ1 (θ), ..., ψr (θ) are infinitely often differentiable in θ.
If we know a function belongs to the exponential family we can do this:
τ 0 (θ)
E[t(Yj )] = (2)
ψ 0 (θ)

The equation (2) simplifies if ψ(θ) = θ. Such a parametrization is called canonical, with ψ the canonical
parameter.

Lecture 4: Maximum Likelihood (83)
Estimation is finding an estimator θ̂ for the true parameter that generated our data, say θ0 . Definition: An
estimator is a function θ̂ : Y → Θ. The maximum likelihood estimator (MLE) of θ is an element θ̂ ∈ Θ
which attains the maximum value of the likelihood L(θ) in Θ, i.e.

L(θ̂) = max L(θ) (3)
θ∈Θ

the basic idea of maximum likelihood estimation is to find the parameter that maximizes the chance of seeing
the sample we have. We have that the likelihood and the log-likelihood give the same maximum.

If L(θ) is differentiable and Θ is an open subset of Rk , then the MLE must satisfy:

`(θ)|θ=θ̂ = 0 (4)
∂θ

2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Bramdejong01 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
14
Lid sinds
6 jaar
Aantal volgers
10
Documenten
6
Laatst verkocht
1 jaar geleden

3,0

2 beoordelingen

5
1
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen