100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

1BM120 - Computational Intelligence

Beoordeling
-
Verkocht
-
Pagina's
14
Geüpload op
12-09-2021
Geschreven in
2020/2021

A summary of the lectures of Computational Intelligence and strong and weak points of the algorithms discussed in the course 1BM120.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 september 2021
Aantal pagina's
14
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Voorbeeld van de inhoud

Lecture summary 1BM120
Lecture 1: evolutionary computation
Computational intelligence is the theory, design, application and development of biologically and
linguistically motivated computational paradigms. CI consists of three pillars:

1. Evolutionary computation (and swarm intelligence)
2. Fuzzy systems
3. Neural networks

CI tends to focus on bio-inspired algorithms (genetic programming, artificial immune systems). AI is
about deductive and symbolic reasoning aiming at replicating animal (human) behavior (logic
programming, Hodgkin-Huxley neuronal models). The main overlap between CI and AI are machine
learning and neural networks.

Bio-inspired meta-heuristic are population-based iterative stochastic algorithms for global
optimization.

Any objective function can be re-stated as an optimization problem. Real-world problems are often
non-convex, non-linear, multi-model etc. Computational intelligence optimization meta-heuristics
can be employed.

- Create a random set of candidate solutions to a given optimization problem and simulate
Darwinian processes to evolve the population towards optimal solutions.
- A candidate solution is encoded as a fixed-length vector which is a feasible solution and its
quality can be evaluated by means of an objective function f (fitness function).

Genetic algorithms:

A set of randomly generated candidate solutions evolves iteratively and converges to the optimal
solution of a given problem.

1. A population of random N individuals is created
2. The fitness value of all N individuals is calculated
3. Survival of the fittest: a selection mechanism is used to choose pairs of individuals with a
probability proportional to their fitness values
4. Each pair of selected individuals (the parents) undergoes a genetic crossover: their
chromosomes are randomly exchanged to produce new individuals (the offspring)
5. The offspring undergo genetic mutation: some symbols of the individuals are randomly
changed
6. When N offsprings are created, they replace the previous population
7. If the termination criterion is met, the algorithm returns the best fitting individuals as
solution; else, perform a new generation by iterating the process from step 2.

Termination criterion:

1. Fitness value threshold
2. Fixed amount of generations
3. Loss of diversity in the population

Selection methods:

, - Roulette wheel: the probability of selecting an individual is proportional to its fitness value:
f ( xi )
Psel ( x i )= N

∑ ❑ f ( xn)
n=1
- Ranking: rank solutions according to their fitness value, the probability of selecting an
1
individual is proportional to its ranking: Psel ( x i )=
r i +1
- Tournament: a selection of individuals are chosen from the population to compete in a
tournament. The best individual wins the tournament and is selected.

Crossover:

Each of the parents, extract a random number. If this number is smaller than the crossover
probability, the parents undergo crossover.

- Single point crossover: select a random crossover point and exchange the parts from this
line.
- Uniform crossover: randomly generate a bit-mask. The mask denotes which bit is kept on
from parents 1 to offspring 1 and which are swapped form parent 1 to offspring 2.
- Partially matched crossover: special type of crossover preserving
relative order:



Mutation:

Mutation introduces new genetic material into the population.

- Uniform mutation: bit flip (1 becomes 0 and the other way
around). A high mutation probability corresponds to a random
search

Elitism: during the evolution, one excellent individual might be “destroyed” by the genetic operators.
Elitism preserves such individual, by copying the best individual to the next generation.

Premature convergence: when a GA converges too fast to a suboptimal population.

Loss of diversity: when the individuals of a GA population are too similar, so that the crossover is no
longer effective.



Handling constraints:

- Set the fitness of unfeasible solutions to extreme values,
- Penalize the fitness function,
- Fix wrong solutions,
- Use special encodings,
- Manipulate the search space.

Lecture 2: evolutionary and swarm computation
Differential evolution is a parallel direct search method based on parameters vectors for real-valued
global optimization. Evolutionary computation approach: a population of solutions evolves

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
AnneBannink Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
14
Lid sinds
5 jaar
Aantal volgers
13
Documenten
18
Laatst verkocht
1 jaar geleden

2,0

4 beoordelingen

5
0
4
0
3
2
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen