100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Chapter 2

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
12-06-2021
Geschreven in
2019/2020

This is a summary of chapter 2. With all of my summaries for this course I passed it with an 7,4!









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 juni 2021
Aantal pagina's
3
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Lecture 2 – Scientific inference
Deduction and induction
 Deductive inference: all Frenchmen like red wine + peirre is a Frenchman
(premises) = therefore, Pierre likes red wine (conclusion)
Truth-preserving: if the premises are true then the conclusion must be true too
Justification-preserving: if you’re justified in believing premises you’re justified
in believing the conclusion
 Inductive inference: the first give eggs in the box were good + all the eggs
have the same best-before date stamped on them = therefore the sixth egg
will be good too
No truth-preserving: the conclusion can be false
Justification-preserving: ? hard to say

We rely on inductive inference during live (when turning on your computer in the
morning you are confident it will not explode in your face. This because it never
happened. But is can explode this time).
Scientist also use inductive inference (people with Down Syndrome have 3 copies of
chromosome 21. So, all people with Down Syndrome have 3 copies of also those
who have no examination on it – scientists’ reason inductively when they move from
limited data to more general conclusion)

Most philosophers think science relies on induction. But Popper claimed that scientist
only need to use deductive. Popper’s argument for this was: although a scientific
theory can never be proved true by a finite amount of data it can be proved false or
refuted AND it was motivated by the belief that Hume had shown the unjustifiability of
induction (see Hume’s problem)
So, if a scientist is trying to refute the theory rather than establish its truth their goal
could be accomplished without the use of induction.
The weakness of Popper’s argument is that the goal of science is not solely to refute
theories but also to determine which theories are true.
So, Popper’s attempt to show that science can get by without induction does not
succeed.

Hume’s problem
Hume argued that the use of induction cannot be justified at all. We use it every day
in life and in science but cannot give a good reason for using it.

Whenever we make inductive inferences we seem to presuppose what he called the
uniformity of nature (assumption that objects we haven’t examined will be similar to
objects of the same sort that we have examined). In each case the reasoning
depends on the assumption that objects we haven’t examined will be similar, in
relevant respects, to objects of the same sort that we have examined. That
assumption is what Hume means by uniformity of nature.

Since a non-uniform world would be logically impossible, it follows that we cannot
prove that the uniformity assumption is true.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biomedicalsciencesvu Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
692
Lid sinds
6 jaar
Aantal volgers
337
Documenten
242
Laatst verkocht
6 maanden geleden

3,9

341 beoordelingen

5
128
4
115
3
58
2
6
1
34

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen