100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Rekenen met hele getallen op de basisschool

Beoordeling
-
Verkocht
6
Pagina's
9
Geüpload op
01-11-2014
Geschreven in
2014/2015

Samenvatting studieboek Rekenen met hele getallen op de basisschool van A. Veltman, M. van den Heuvel- Panhuizen (H2, H3, H4.1 4.2 4.3) - ISBN: 9789001765095, Druk: 1e, Uitgavejaar: 2010











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H2, h3, h4.1 4.2 4.3
Geüpload op
1 november 2014
Aantal pagina's
9
Geschreven in
2014/2015
Type
Samenvatting

Voorbeeld van de inhoud

Rekenen H2 Groeiend getalbegrip in
voorschoolse periode en groep 1 en 2
2.2 (Voor)schoolse periode: ontluikende gecijferdheid
Ontluikende gecijferdheid is een proces waarbij kinderen grotendeels op eigen kracht geleidelijk
meer besef krijgen van verschillende betekenissen en gebruikswijzen van getallen, en de samenhang
daartussen.

2.2.1 Waar kun je ontluikende gecijferdheid aan herkennen?
- Besef krijgen van aantal
- Inzetten van de telrij bij veranderde hoeveelheden (je hebt er al 5, en er komen er 2 bij dus dat is 7)
- Opzeggen van de telrij als een versje
- Symboliseren op vingers
- Naspelen van het resultatief tellen

2.2.2 Verschillende betekenissen van getallen
- Aantal: hoeveelheidsgetal of kardinaalgetal, herkenning : : = 4
- Telgetal: volgorde getal of ordinaalgetal, 1ste, 2de
- Meetgetal: als er een maat of meet bij staat. 1m 50, 6 jaar oud
- Naamgetal: hier kan je niet mee rekenen of optellen. Dit is bijvoorbeeld een huis of busnummer.
- Rekengetal: kale getallen: 5 + 2 = 7

2.2.4 Incidenteel en intentioneel leren
Incidenteel leren ontstaat zonder dat er sprake is van een doelbewuste onderwijsactiviteit.
Intentioneel leren is een onderwijsactiviteit met een doel.

Je hebt dan ook nog spontane situaties die tussen leerlingen ontstaan.
Maar je hebt ook gecreëerde lessituaties, die je als leerkracht kan aanpassen aan de belevingswereld
van de klas.


2.4 Tellen in groep 1 en 2
2.4.2 Verschillende vormen van tellen
- Akoestische tellen
Opzeggen van de telrij maar je hoeft niet te weten wat het betekend. Dit kan komen door liedjes.

- Assynchroon tellen
Sneller tellen dan aanwijzen dus er komen dan fouten.

- Synchroon tellen (aanwijzend en kijkend)
1 telwoord per object.




1

,- Resultatief tellen
Bewust zijn dat het laatste telwoord het aantal/ antwoord is.

- Verkort tellen
Verder tellen vanaf een bepaald getal. Je hebt er 4 en dan niet weer 1,2..,aar 5,6

- Structurerend tellen
In groepjes tellen, 2,4,6 en je bent van tekens bewust+ - / < > =


2.5 Tellen- en- rekenen in groep 2 (3)

2.5.2 Drie ontwikkelingsniveaus van tellen-en-rekenen
- Niveau van contextgebonden: hoe vraag  hoe oud? Hoe duur? Hoe hoog? Hoe laat?
- Niveau van objectgebonden: hoeveelvraag hoeveel kaarsen? Je kunt dit ook doen door daarna
een doel over een aantal kaarsen heen te leggen. Hoeveel kaarsen liggen er dan onder het doek?
-Niveau van pure tellen en rekenen


Rekenen H3 Rekenen tot 10, tot 20 en
tot 100 in groep 3 en 4
3.2 Rekenen tot 10, 20 en tot 100
Rekenen tot 10: Getalkennis
Rekenen tot 20: Afleiden van bekende sommen
Aanvullen en afhalen tot 10
Rekenen tot 100: Strategieën voor rijgen en splitsen

3.2.1 Context van getallen
- Benoemde getallen
Getallen die voorkomen in alledaagse rekensituaties met verschillende betekenissen.

- Onbenoemde getallen
Getallen in de rekenwereld


3.3 Rekenen tot 10
Resultatief tellen en verkort tellen is aan de orde geweest en hier wordt nu verder op ingegaan.
Er wordt turven of zetten van stippen gehanteerd om een brug te maken tussen concrete
hoeveelheid en abstracte weergeven hiervan. De cijfers zelf zijn voor sommige nog niet te koppelen
aan het aantal. Ook het schrijven van de cijfers kost nog veel tijd in het begin van groep 3.

Een aftreksituatie hanteren de kinderen in verschillende werkwijzen:
- Gebruiken van de telrij door eerst vooruit en dan terug te tellen
- Het getal splitsen



2

, - In gedachten 2 groepen maken (brandende kaarsen en niet-brandende kaarsen) om vervolgens te
kunnen tellen
- Vingers gebruiken
- Gebruiken van de vijfstructuur door ineens een hand weg te halen. De vijfstructuur kan ook met
een kralenketting of een dooseieren.

3.3.1 Splitsen
Door te splitsen leren kinderen de relaties tussen de getallen kennen en deze relaties te gebruiken bij
het rekenen.
Bij aftrekking kan er ook gerekend worden met splitsen.
12 – 8 =
De splitsing van 8 in 2 en 6

3.3.2 Aandachtspunten bij het optellen en aftrekken tot 10
- Optellen wordt niet verkort tot doortellen vanaf de eerste regel.
5 + 4 = niet 1 2 3 4 5 6 7 8 9
Terwijl als je 5 neemt en daar 4 stappen verder telt dit wel klopt.

- Het startpunt of eindpunt van de telhandeling is fout.
5+3=
Hierbij wordt 5 als startpunt gezien. Dus 5 (1) 6(2) 7(3)

- Het bijtellen gebeurt niet handig
De verwisseleigenschap wordt hierbij niet gebruikt en er wordt dus niet bij het grootset getal
begonnen.
2 + 5 = Je kunt beter 5 + 2 doen

- Het tellen wordt niet verder verkort
Hierbij worden opgave die al geautomatiseerd zijn niet gebruikt. Een leerling weet al dat 3+3 = 6
Maar bij 4 + 3 wordt dit niet gebruikt door er gewoon 1 bij op te tellen.

3.3.3 Memoriseren bij het optellen en aftrekken tot 10
Bij het rekenen tot 10 zijn er verschillende sommen te onderscheiden.
Deze sommen kenmerken zich door bepaalde combinaties van getallen en kunnen kinderen helpen
om een overzicht te krijgen van de opgave die ze sowieso al kennen.

- Erbij 0 en omgekeerd 7+0 0+7
- Erbij 1 en omgekeerd 7 +1 1+7
- Het verdubbelen van een getal 3+3 4+4
- Het bijna-dubbelen van een getal 3+4 4+5
- Erbij 2 en omgekeerd 5+2 2+5
- Erbij 5 en omgekeerd 2+5 5+2
- Vrienden van 10 1 +9 9+1
- Resterende opgave 6+3 3+6

- Eraf 0 6–0
- Eraf 1 6–1




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Anouk_ Hogeschool Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
105
Lid sinds
11 jaar
Aantal volgers
79
Documenten
19
Laatst verkocht
2 jaar geleden

2,9

8 beoordelingen

5
0
4
3
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen