100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Statistics 2 Notes

Beoordeling
5,0
(1)
Verkocht
3
Pagina's
85
Geüpload op
26-05-2021
Geschreven in
2020/2021

Summary of lecture notes and some additional information from the book. Organized by week which is dedicated to a topic (7 total)












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
7, 6, 12
Geüpload op
26 mei 2021
Bestand laatst geupdate op
30 mei 2021
Aantal pagina's
85
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

p>0.05 = not significant – accept null – p is big
p<0.05 = significant – reject null – p is small


Week one: 1-Way ANOVA

Comparing means of groups: Do two groups have the same population
mean? We can use a t test and find out with its p-value
Example: is there difference in the effectiveness between two methods for
reading lessons for second-graders?

Do three or more groups have the same population mean? We can use
ANOVA

1-way ANOVA can be used for this type of question:
• Do three or more groups have the same population mean and are
the populations classified according to one factor?
o Eg: Is there a difference in the effectiveness between three
methods for reading lessons for second-graders?
o Using multiple t-tests, comparing 3 groups but that is not ideal


Issue with multiple t-tests: inflation of surprise
• When one performs multiple comparisons on the same data, the
probability of finding a surprising result increases --- change of type
I error increases

Consider 3 groups: A, B, C. We have 3 pairwise comparisons: (A, B), (A, C), (B,
C)
• p<0.05, so probability of no Type I error: 95% -- 5% chance of false
positive
• Each test is independent, so for 3 groups so you have to run 3 t-tests
o Probability of no Type I: 0.95*0.95*0.95 = 0.857
o Probability of Type I error is 1-0.857 = 14.3% -- much higher than
5%

Why we use ANOVA instead
___________________________________

ANOVA stands for ANalysis Of VAriance
• The name refers to variance, yet this technique is about comparing
the means (of 3 or more groups)

, • Predictor variable(s) are categorical factors (in 1 way ANOVA, 1
predictor)
• ANOVA is a family of statistical tests.
• 3 types:
1. 1-way
i. Observations are independent
ii. 1 experiment condition
2. Factorial
i. Observations are independent
ii. 2 or more experimental conditions. We can measure:
1. Individual effects
2. interactions
3. Repeated measures
i. Each subject is tested more than once, or
ii. Each stimulus is presented more than once

Variable types
• Between-group: different groups or subjects assigned to different
conditions
o Eg: patients taking 3 different treatments
• Within-subject: the same subjects tested in more than 1 condition
o Eg: subjects reacting to 3 different types of words (each
subject sees all the types)

What this implies?
• Only between-group variables: 1-way and factorial ANOVAs
• Only within-subject: repeated measures ANOVA
• Both types: mixed ANOVA (not covered in course)


~ ANOVA is a special case of linear regression (LR). In fact R implements
ANOVA as LR
• everything you can do with ANOVA you can do with regression
~ ANOVA is in disuse in favour of LR
• Still, you will find ANOVAs in papers so you should be able to
interpret them

Assumptions:
• The observations are independent from each other
• The response variable is at least interval-scaled
o Its numerical

,• The residuals are normally distributed (each sample is drawn from a
normally distributed population)




o
▪ We see if the residuals follow a normal distribution
▪ Residuals is the error – how far the model is from the
data




o
▪ 𝐻0 : each groups follows normal distribution
▪ Dependent, independent
▪ Groups 1 and 2 do not follow normal distribution (𝑝 <
0.05)
▪ P needs to be bigger than 0.05 to follow normal
distribution
• The variance is homoscedastic
o the variances in all groups are (roughly) equal
o so we want a not significant p value p>0.05

, o
▪ Variance assumptions is not met
o Fligner-Killeen test: for non-normal data
▪ Alternative for levene when data is not normal
distributions





• Data is not normally distributed and variance is
not the same in all the groups

Alternative tests when data is not normally distributed, and variance are
not the same throughout the groups
1. Variance not homogeneous:
1. Welch one-way test
2. oneway.test()
2. Non-normality:
1. Kruskal-Wallis,
2. kruskal.test()
3. Both assumptions violated: (in the case rn)
1. non-parametric ANOVA,
2. oneway_test()





• Still get a significant result

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
4 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lamotte01 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
36
Lid sinds
5 jaar
Aantal volgers
31
Documenten
9
Laatst verkocht
1 jaar geleden

4,6

5 beoordelingen

5
3
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen