100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting Wetenschappelijke Vorming 2 - Statistiek

Beoordeling
4,5
(2)
Verkocht
5
Pagina's
105
Geüpload op
21-09-2025
Geschreven in
2024/2025

Deze samenvatting bevat al het materiaal uit de les in een duidelijk overzicht mbv afbeeldingen, tekeningen, oefeningen, berekeningen, ... Punt behaald in eerste zit: 18/20

Voorbeeld van de inhoud

​Statistiek 2​

,​Herhaling:​​beschrijvende​​en​​inferentiële​​statistiek​​..................................................................​​5​
​Introductie:​​quiz​​.......................................................................................................................​​5​
​Basic​​statistical​​concepts​​.........................................................................................................​​7​
​Sample​​vs​​population​​.........................................................................................................​​7​
​Statisch​​significant​​vs​​klinisch​​relevant​​..............................................................................​​7​
​Methods​​of​​research​​..........................................................................................................​​7​
​Types​​of​​data​​.....................................................................................................................​​8​
​Summarizing​​data​​..............................................................................................................​​8​
​1.​​Measures​​of​​location​​................................................................................................​​8​
​Quartiles​​.......................................................................................................................​​8​
​2.​​Measures​​of​​variation​​...............................................................................................​​9​
​Grafic​​Representation:​​boxplot​​....................................................................................​​9​
​Hypothesis​​testing​​for​​a​​population​​parameter​​........................................................................​​9​
​Algemene​​procedure​​.............................................................................................................​​10​
​1.​​Toetsingsprobleem​​.......................................................................................................​​10​
​2.​​Toetstingsgrootheid:​​een​​gepaste​​test​​statistic​​kiezen​​.................................................​​10​
​3a.​​Beslisregel​​-​​kritisch​​punt​​...........................................................................................​​11​
​3a.​​Beslisregel​​-​​p-waarde​​...............................................................................................​​11​
​Overzicht​​van​​statistische​​testen​​om​​2​​of​​meer​​means/proporties​​te​​vergelijken​​..................​​12​
​Introductie​​........................................................................................................................​​12​
​One-sample​​t-test​​............................................................................................................​​13​
​One-sample​​t-test​​in​​R​...............................................................................................​​14​
​One-sample​​t-test:​​assumpties​​en​​opmerkingen​​.......................................................​​14​
​Paired​​t-test​​......................................................................................................................​​14​
​Paired​​t-test​​in​​R​........................................................................................................​​15​
​Unpaired​​t-test​​.................................................................................................................​​15​
​Unpaired​​t-test​​in​​R​....................................................................................................​​15​
​Unpaired​​t-test​​assumpties​​en​​opmerkingen​​.............................................................​​16​
​One-sample​​z-test​​............................................................................................................​​16​
​One-sample​​z-test​​in​​R​..............................................................................................​​17​
​Two-sample​​z-test​​............................................................................................................​​17​
​Two-sample​​z-test​​in​​R​..............................................................................................​​18​
​Two-sample​​z-test​​......................................................................................................​​18​
​Lineaire​​regressie​​......................................................................................................................​​19​
​Van​​statistische​​testen​​naar​​regressiemodellen​​....................................................................​​19​
​Regressiemodellen​​................................................................................................................​​19​
​Enkelvoudige​​lineaire​​regressie​​.............................................................................................​​20​
​Voorbeeld:​​oestriol​​niveau​​..........................................................................................​​20​
​De​​modelonderstellingen​​.................................................................................................​​21​
​Schatten​​van​​intercept​​en​​richtingscoëfficiënt​​..................................................................​​22​
​In​​R​..................................................................................................................................​​23​


​1​

, ​ erklarende​​statistiek​​voor​​α​​en​​ß​...................................................................................​​25​
V
​F-test​​voor​​enkelvoudige​​lineaire​​regressie​​...........................................................................​​26​
​Voorbeeld​​F​​verdeling​​................................................................................................​​27​
​In​​R:​​opdrachten​​........................................................................................................​​28​
​T-test​​voor​​enkelvoudige​​lineaire​​regressie​​...........................................................................​​29​
​Relatie​​tussen​​T​​test​​en​​globale​​F​​test​​............................................................................​​30​
​Betrouwbaarheidsintervallen​​.................................................................................................​​30​
​BI​​voor​​de​​regressieparameters​​α​​en​​ß​...........................................................................​​30​
​Betrouwbaarheidsband​​....................................................................................................​​32​
​Predictie-interval​​voor​​y​​horende​​bij​​een​​gegeven​​x​​waarde​​.................................................​​32​
​Predictieinterval​​voor​​John:​​........................................................................................​​35​
​Welk​​punt​​zou​​het​​smalste​​BI​​hebben?​​.....................................................................​​35​
​Correlatiecoëfficiënt​​...............................................................................................................​​36​
​In​​R​..................................................................................................................................​​37​
​Verschil​​correlatieanalyse​​en​​enkelvoudige​​lineaire​​regressie​​...................................​​37​
​Verband​​tussen​​b​​en​​r​......................................................................................................​​37​
​Samenvatting​​lineaire​​regressie​​............................................................................................​​38​
​Meervoudige​​regressie​​........................................................................................................​​40​
​De​​regressievergelijking​​...................................................................................................​​40​
​Schatting​​van​​de​​parameters​​...........................................................................................​​41​
​Interpretatie​​van​​regressiecoëfficiënten​​...........................................................................​​41​
​Gestandaardiseerde​​regressiecoëfficiënt​​........................................................................​​42​
​In​​R:​​uitleg​​verschillende​​tekens!​​...............................................................................​​43​
​Voorbeeld​​hypertensie​​...............................................................................................​​44​
​Meervoudig​​lineair​​regressiemodel​​..................................................................................​​44​
​Toetsen​​voor​​de​​hele​​groep​​van​​regressoren​​..................................................................​​45​
​ANOVA​​(analysis​​of​​variance)​​tabel:​​..........................................................................​​46​
​In​​R:​​voorbeeld​​hypertensie​​.......................................................................................​​46​
​Kleine​​ANOVA​​tabel​​voor​​lineair​​regressie​​model​​......................................................​​46​
​Grote​​ANOVA​​tabel​​....................................................................................................​​47​
​Toetsen​​voor​​één​​regressor​​.............................................................................................​​47​
​In​​R:​​...........................................................................................................................​​48​
​De​​partiële​​F-test​​.............................................................................................................​​49​
​In​​R:​​kleine​​ANOVA​​....................................................................................................​​50​
​DUS​​ELR​​vs​​MLR​​Globale​​F​​en​​T​​test​​.............................................................................​​50​
​In​​R:​​grote​​ANOVA​​.....................................................................................................​​51​
​Berekening​​van​​REG​​SS,​​RES​​SS,​​…​.......................................................................​​51​
​EXAMEN:​​.........................................................................................................................​​51​
​Interactie-effecten​​............................................................................................................​​52​
​Categorische​​variabelen​​..................................................................................................​​53​
​Visualisatie​​van​​een​​interactie-effect​​..........................................................................​​54​


​2​

, ​ pdracht​​lineaire​​regressie​​-​​Framingham​​............................................................................​​55​
O
​Examenvoorbeeld​​lineaire​​regressie​​.....................................................................................​​55​
​Veralgemeende​​lineaire​​regressie​​............................................................................................​​56​
​Inleiding​​............................................................................................................................​​56​
​Bernoulli​​verdeling​​(herhaling)​​...............................................................................................​​56​
​Voorbeeld:​​varicella​​....................................................................................................​​57​
​Logistische​​regressie​​.............................................................................................................​​57​
​Veralgemeend​​lineaire​​modellen​​(GLM)​​................................................................................​​59​
​Schatten​​van​​de​​regressieparameters​​in​​GLM​​................................................................​​59​
​Maximum​​likelihood​​methode​​..........................................................................................​​60​
​Maximum​​likelihood​​methode:​​oefening​​.....................................................................​​60​
​Voordeel​​van​​ML​​........................................................................................................​​61​
​Voorbeeld:​​varicella​​....................................................................................................​​61​
​In​​R:​​interpretatie​​.......................................................................................................​​61​
​Interpretatie​​R​............................................................................................................​​62​
​In​​R​............................................................................................................................​​63​
​Wald​​test​​....................................................................................................................​​64​
​Betrouwbaarheidsinterval​​..........................................................................................​​65​
​Predictie​​...........................................................................................................................​​65​
​Voorbeeld​​...................................................................................................................​​66​
​EXAMENVOORBEELD​​OEFENING​​LINEAIRE​​REGRESSIE​​..............................................​​66​
​Samenvatting​​.........................................................................................................................​​67​
​Categorische​​variabelen​​..................................................................................................​​68​
​In​​R:​​...........................................................................................................................​​68​
​Meervoudige​​logistische​​regressie​​........................................................................................​​70​
​R-voorbeeld:​​varicella​​................................................................................................​​70​
​Aikake’s​​Information​​Criterion​​(AIC)​​......................................................................................​​73​
​Samenvatting:​​belangrijk​​om​​te​​weten​​...................................................................................​​73​
​Possoin​​regressie​​..................................................................................................................​​73​
​Voorbeeld:​​aantal​​insecten​​op​​bonenplanten​​.............................................................​​74​
​Poisson​​verdeling​​.............................................................................................................​​74​
​Voorbeeld:​​SENIC​​data​​..............................................................................................​​75​
​Transformatie​​...................................................................................................................​​76​
​Veralgemeende​​lineaire​​modellen​​(GLM)​​........................................................................​​76​
​Voorbeeld:​​SENIC​​data​​..............................................................................................​​77​
​In​​R​............................................................................................................................​​77​
​Interpretatie​​......................................................................................................................​​78​
​Toetsen​​van​​hypothese:​​Wald-test​​...................................................................................​​78​
​Interpretatie​​......................................................................................................................​​79​
​Categorische​​variabelen​​..................................................................................................​​79​
​R-voorbeeld​​SENIC:​​regio​​(eigenlijk​​al​​een​​meervoudig​​model)​​................................​​79​


​3​

, ​ ergelijking​​met​​logistische​​regressie​​........................................................................​​80​
V
​Meervoudige​​Poisson​​Regressie​​.....................................................................................​​80​
​R-voorbeeld:​​SENIC​​..................................................................................................​​81​
​Samenvatting​​types​​...................................................................................................................​​83​
​Overlevingsanalyse​​en​​Cox​​regressie​​.....................................................................................​​84​
​Overlevingsanalyse​​...............................................................................................................​​84​
​Definitie​​en​​notatie​​.....................................................................................................​​85​
​Belangrijke​​concepten​​I​...................................................................................................​​85​
​Belangrijke​​concepten​​II​​..................................................................................................​​86​
​Voorbeeld​​...................................................................................................................​​86​
​Overlevingsfunctie​​of​​-curve​​............................................................................................​​87​
​Overlevingsanalyse​​met​​censurering​​...............................................................................​​89​
​Types​​van​​censurering​​...............................................................................................​​89​
​Rechtse​​censurering​​........................................................................................................​​91​
​Voorbeeld​​...................................................................................................................​​91​
​Voorbeeld:​​Duur​​van​​remissie​​in​​een​​klinische​​..........................................................​​91​
​Niet-parametrische​​schatting​​van​​S(t*)​​......................................................................​​92​
​Overlevingsfunctie​​in​​geval​​van​​censurering:​​Kaplan-Meier​​............................................​​92​
​Voorbeeld​​...................................................................................................................​​94​
​In​​R​............................................................................................................................​​95​
​In​​R:​​Kaplan-meier​​.....................................................................................................​​96​
​Vergelijken​​van​​overlevingsfuncties​​.................................................................................​​96​
​Regressie​​voor​​overlevingsanalyse​​.......................................................................................​​98​
​Cox​​proportional​​hazards​​model​​......................................................................................​​98​
​Schatten​​van​​de​​regressieparameters​​.............................................................................​​98​
​Interpretatie​​......................................................................................................................​​99​
​Proportional​​hazards​​assumptie​​......................................................................................​​99​
​Coxmodel​​in​​R​.........................................................................................................​​100​
​Predictie​​.........................................................................................................................​​102​
​Overzicht​​..................................................................................................................................​​103​




​4​

,​Herhaling: beschrijvende en inferentiële statistiek​

​Introductie: quiz​
​1.​ ​Which type of data is given in the following examples:​
​○​ ​Male/female ⇒ kwalitatief nominaal​
​○​ ​Number of heart beats per minute ⇒ kwantitatief discreet​
​○​ ​Blood pressure ⇒ kwantitatief continu​
​2.​ ​What is the median value of the observations xi : 80,90,110,125,130,135?​
​⇒ (110+125)/2 = 117,5​
​3.​ ​How does the previous result change when adding an observation 140 to the​
​aforementioned series? ⇒ mediaan = 125​
​4.​ ​How do you calculate the sample mean and variance of the series?​
​⇒ variantie = waarde van spreiding​
​○​ ​Waarden groter dan gem ⇒ pos bijdrage​
​○​ ​Waarden kleiner dan gem ⇒ neg bijdrage​
​⇒ niet handig dus kijken naar​​gekwadrateerde vorm​​v variantie​​en dan delen door n-1​
​⇒ s² volgt een verdeling ⇒ geheel is stochastisch​




​5.​ ​Explain the difference between Xi and xi ?​
​○​ ​Grote x: verdeling van alle mogelijke steekproef varianties = verdeling f​
​○​ ​Kleine x: één waarde uit die verdeling (getal)​
​6.​




​5​

,​7.​
​ een ongepaarde T-test of twee steekproeven T-test: er vanuit gaan dat normaal​

​verdeeld EN de variantie gelijk verdeeld is​




​8.​
​ binaire uitkomst: 0 of 1 (ja of nee) DUS guy kwadraat test: wat is de proportie van​

​mensen die influenza krijgen in verschillende samenlevingen​




​6​

,​Basic statistical concepts​

​Sample vs population​
​Population​
​●​ ​A population refers to a​​well-defined group of subjects​​in which the researcher is​
​interested from a scientific point of view​
​●​ ​Often, a population is​​too large​​(or even infinite)​​to examine all subjects (too expensive,​
​too time-consuming, ...)​
​Sample​
​●​ ​A sample is a​​finite collection of study subjects​​for which observed characteristics and​
​response values are recorded​
​●​ ​Sample needs to be​​representative​​in order to provide​​valid inference at the population​
​level​


​Statisch significant vs klinisch relevant​
​Statistical significant:​
​●​ ​Statistical significance is based on measurements, observations, numbers, ...​
​●​ ​Statistical expertise is required​
​Clinical relevant:​
​●​ ​Which research questions are relevant to answer?​​Is​​het verschil betekenisvol?​
​●​ ​Clinical relevance is determined using​​domain-specific​​expertise​
​●​ ​Medical doctor, clinical investigator, lab-researcher, ...​
​⇒Statistical significant ≠ clinical relevant​


​Methods of research​
​Two large groups of research/studies:​
​1.​ ​Experimental studies​
​○​ ​Studying the​​effect of a treatment​
​○​ ​Example: Clinical trials​
​■​ ​Randomisation​
​■​ ​Blinding​
​■​ ​Placebo​
​○​ ​Aim: Does a causal relationship exist?​
​2.​ ​Observational studies​
​○​ ​No active intervention​
​○​ ​Example: Has smoking an effect on the development of lung cancer?​
​○​ ​In general no conclusions about causal relationships, only​​evidence of potential​
​associations​




​7​

, ​Types of data​
​Qualitative data:​
​●​ ​Nominal data​​: categorical data used to classify an​​object of characteristic, e.g., gender,​
​group membership, diagnosis​
​●​ ​Ordinal data​​: categorical data with specific ordering,​​e.g., opinion polls asking whether​
​we strongly disagree, disagree, agree or strongly agree​
​Quantitative (numeric) data:​
​●​ ​Discrete data​​: measurement or count (ordered) data​​for which values cannot lie​
​arbitrarily close to each other, e.g., the number of pregnancies of a woman​
​●​ ​Continuous data​​: measurement data which could take​​all values within a range, e.g.,​
​individual’s weight, or length​


​Summarizing data​
​1.​ ​Measures of location:​
​○​ ​(arithmetic) mean​
​○​ ​median​
​○​ ​(quartiles)​
​2.​ ​Measures of variation:​
​○​ ​variance and standard deviation​
​○​ ​range​
​○​ ​interquartile range (IQR)​

​1. Measures of location​
​ ean​
M
​The (arithmetic) mean x of numeric observations x1,...,xn is given by ⇒​

​ edian​
M
​The median of a series of n numeric observations is, after ordering of the values in this series,​
​●​ ​the middle value, if n is an odd number,​
​●​ ​the arithmetic mean of the two middle numbers, if n is even​

I​n case of observations in the following frequency table (n observations; p​
​different values of x) then the arithmetic mean is given by:​



​Quartiles​
​ ​ ​the​​first quartile Q1​​is the number with rank (n+1)/4​

​●​ ​the​​second quartile Q2​​is the number with rank (n+1)/2​
​●​ ​the​​third quartile Q3​​is the number with rank 3(n+1)/4​
​Non-rationale ranks:​




​8​

Documentinformatie

Geüpload op
21 september 2025
Bestand laatst geupdate op
28 januari 2026
Aantal pagina's
105
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
1 week geleden

2 maanden geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
peeterseva Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
62
Lid sinds
4 maanden
Aantal volgers
4
Documenten
24
Laatst verkocht
4 uur geleden

4,7

11 beoordelingen

5
8
4
3
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen