Hoofdstuk 7: in vivo metingen bij de
mens
Deel 1: Ultrasone beeldvorming
1. Karakteristieken van geluid en geluidsgolven
Voortplanting van geluid
- Geluid kan zich enkel voortplanten in een medium, kan zich niet voorplanten in de ruimte
- Geluid is een longitudinale golf (drukgolf)
Grafiek:
- Relatieve druk in functie van de plaats/tijd
- 2 mogelijke situaties:
o Samendrukking = compression
o Uitzetting = rarefaction
Enkele begrippen:
- Periode T = de tijd van een volledige oscillatie-cyclus
- Golflengte λ = de afstand tussen twee opeenvolgende golftoppen
- Frequentie f = het aantal keer dat een golf oscilleert doorheen 1 cyclus per seconde
(eenheid: cycli/s = Hz)
- Geluidssnelheid v = afstand afgelegd door de golf per tijdseenheid
o Snelheid = afstand/tijd = golflengte/periode = golflengte maal
frequentie
o Lage frequentie = grote golflengte
o Hoge frequentie = lage golflengte
Beschrijving van vlakke golven
Met amplitude A
- Golven beschrijven als cosinus of sinus (of combinatie ervan)
Met golfgetal k = 2π/λ
- Golven met dezelfde golflengte en amplitude kunnen Met snelheid v
verschoven zijn in tijd/plaats => nemen we
faseverschil (in radialen)
Interferentie = effect van meerdere golven die samenvallen in ruimte en tijd
Superpositiebeginsel = waarde van de amplitude op elk tijdstip en elke plaats is de som van de
waarden van de amplitudes van de afzonderlijke golven
Constructieve interferentie:
- Pieken telkens samenvallen
- Elkaar versterken
- Sterkere golf dan de twee apart
1
,Destructieve interferentie:
- Piek komt overeen met dal van de andere golf
- Gaan elkaar voor een stuk opheffen
- Stel identiek in amplitude => elkaar volledig opheffen
- Voorbeeld: noise cancellation hoofdtelefoon => golven waarbij het signaal wordt onderdrukt
Constructieve en destructieve interferentie hangt af van:
- de fase van de interagerende golven
- de amplitude van de interagerende golven
Heel vaak zal interferentie van golven een tussenvorm zijn tussen constructieve en destructieve
interferentie (in praktijk).
Geluidsnelheid is afh van:
- het voorplantigsmedium
- densiteit van het medium
lucht: 3 seconde nodig voor voortplanting van 1 km
EXAMEN: geluidssnelheid in weefsel lager, = of hoger dan
geluidsnelheid in lucht???
Geen getallen, maar wel grootte-ordes kennen
< 20 Hz Infrasoon Bv. vulkaanuitbarstingen op grotere
afstand
20 Hz – 20 kHz Hoorbaar bereik Oor is meest gevoelig voor 2kHz tot 4 kHz
2 MHz – 10 MHz Medisch ultrasoon
10 MHz – 50 MHz Gespecialiseerde ultrasone Dermatologische/neonatologische
toepassingen toepassingen
Toepassingen bij kleine proefdieren
Druk en intensiteit
Energie van geluid veroorzaakt een verplaatsing van deeltjes en variatie in lokale druk in het medium
Druk amplitude P = piek maximum of minimum waarde druk = de gemiddelde druk in het medium bij
afwezigheid van een geluidsgolf = maximale verandering van druk door geluidsgolf
- SI eenheid: Pascal (Pa) = 1 N/m2.
- Diagnostische ultrasone golven: piek drukniveaus rond 1.5 MPa ~ 15 x de atmosferische druk
Akoestische intensiteit I = gemiddelde energie per tijdseenheid per oppervlakte-eenheid (loodrecht
op de voortplantingsrichting)
Relatie tussen intensiteit en druk: I ∝ P2
Intensiteitsniveaus bij medisch diagnostisch ultrageluid in eenheden van mW/cm 2
2
,Decibel (cB) schaal
Intensiteitsbereik menselijk oor: 10-12 tot 1 W/m2
Relatieve intensiteit (dB) ¿ 10 log 10 ( )
I
I0
met I0 de intensiteit van een gekozen referentieniveau.
- Menselijk gehoor: I0 = 10-12 W/m2 (gehoordrempel)
- Ultrasone beeldvorming (US): I0 = de intensiteit van de opgevangen echo
Uitwerking kennen van de volgende situaties (zie notities bij slide):
- Een verandering van 10 in de dB schaal = 1 ordegrootte (10x) meer in intensiteit.
- Een verandering van 20 in de dB schaal = 2 ordegroottes (100x) meer in intensiteit.
2. Interacties tussen ultrasone golven en
materie
Ultrasone interacties worden bepaald door de akoestische eigenschappen van materiaal.
Akoestische impedantie
Akoestische impedantie Z van een materiaal is gedefinieerd als:
Z = ρc
met ρ de dichtheid in kg/m3 en c de geluidssnelheid in m/s.
- SI eenheid: kg/(m2s); 1 rayl = 1 kg/(m2s).
- Akoestische impedantie = materiaaleigenschap die aangeeft hoeveel weerstand een
geluidsgolf ondervindt bij de voortplanting door het materiaal
- Bij lucht => zeer laag (weinig weerstand)
- Bij bot => zeer hoog (veel weerstand)
Reflectie
Aan de overgang van weefsel door het verschil in akoestische impedantie
Reflectiecoëfficiënt = fractie van de geluidsintensiteit v/e loodrechte golf dat gereflecteerd wordt
Voor loodrechte inval:
2
I r Z 2−Z 1
- Intensiteit reflectiecoëfficiënt R I = =( )
Ii Z2 + Z 1
- Intensiteit transmissiecoëfficiënt T I =1−R I
- met r = reflecterende golf & i = inkomende golf
3
, Bij de overgang lucht - weefsel: bijna 100% van de invallende intensiteit wordt
gereflecteerd (Z2 >> Z1) gebruik van akoestische gel tussen
transducer en de huid.
Als de golf loodrecht invalt op de weefselrand: productie van een echo (=teruggekaatste geluidsgolf)
Bij niet loodrechte inval (onder een hoek θi): reflectie over een hoek θr
θi = θr
Echo's worden weg van de transducer gereflecteerd en kunnen niet worden gedetecteerd.
Aanname: we veronderstellen een glad oppervlak tussen weefsels
- glad = de golflengte van de geluidsgolf >> structurele variaties aan de rand
Ultrasone golven met een hogere frequentie (= kortere golflengte):
- het oppervlak is niet langer “glad”
- echo’s worden diffuus verstrooid in het medium
- DUS kleinere fractie van de invallende intensiteit wordt teruggestuurd naar de transducer
Refractie
Verandering van richting van de doorgelaten golf (transmissie t)
Geluidsgolven doorheen weefsels:
- geen verandering van de frequentie
- verandering van de snelheid
De refractiehoek θt wordt bepaald door de verandering van de geluidssnelheid en door de hoek θi
van de invallende golf:
Indien c2 > c1, dan θt > θi
Indien c1 > c2, dan θt < θi
Examenvraag = Kun je op basis van de figuur zeggen welke geluidsnelheid C1/C2 het hoogst is?
Verstrooiing
Een speculaire reflector = glad oppervlakte tussen twee media
(altijd tov golflengte vd geluidsgolf)
Akoestische verstrooiing ontstaat bij objecten en overgangen die
de grootte van de golflengte of kleiner hebben (ruw of niet-
speculair reflectoroppervlakte)
4
mens
Deel 1: Ultrasone beeldvorming
1. Karakteristieken van geluid en geluidsgolven
Voortplanting van geluid
- Geluid kan zich enkel voortplanten in een medium, kan zich niet voorplanten in de ruimte
- Geluid is een longitudinale golf (drukgolf)
Grafiek:
- Relatieve druk in functie van de plaats/tijd
- 2 mogelijke situaties:
o Samendrukking = compression
o Uitzetting = rarefaction
Enkele begrippen:
- Periode T = de tijd van een volledige oscillatie-cyclus
- Golflengte λ = de afstand tussen twee opeenvolgende golftoppen
- Frequentie f = het aantal keer dat een golf oscilleert doorheen 1 cyclus per seconde
(eenheid: cycli/s = Hz)
- Geluidssnelheid v = afstand afgelegd door de golf per tijdseenheid
o Snelheid = afstand/tijd = golflengte/periode = golflengte maal
frequentie
o Lage frequentie = grote golflengte
o Hoge frequentie = lage golflengte
Beschrijving van vlakke golven
Met amplitude A
- Golven beschrijven als cosinus of sinus (of combinatie ervan)
Met golfgetal k = 2π/λ
- Golven met dezelfde golflengte en amplitude kunnen Met snelheid v
verschoven zijn in tijd/plaats => nemen we
faseverschil (in radialen)
Interferentie = effect van meerdere golven die samenvallen in ruimte en tijd
Superpositiebeginsel = waarde van de amplitude op elk tijdstip en elke plaats is de som van de
waarden van de amplitudes van de afzonderlijke golven
Constructieve interferentie:
- Pieken telkens samenvallen
- Elkaar versterken
- Sterkere golf dan de twee apart
1
,Destructieve interferentie:
- Piek komt overeen met dal van de andere golf
- Gaan elkaar voor een stuk opheffen
- Stel identiek in amplitude => elkaar volledig opheffen
- Voorbeeld: noise cancellation hoofdtelefoon => golven waarbij het signaal wordt onderdrukt
Constructieve en destructieve interferentie hangt af van:
- de fase van de interagerende golven
- de amplitude van de interagerende golven
Heel vaak zal interferentie van golven een tussenvorm zijn tussen constructieve en destructieve
interferentie (in praktijk).
Geluidsnelheid is afh van:
- het voorplantigsmedium
- densiteit van het medium
lucht: 3 seconde nodig voor voortplanting van 1 km
EXAMEN: geluidssnelheid in weefsel lager, = of hoger dan
geluidsnelheid in lucht???
Geen getallen, maar wel grootte-ordes kennen
< 20 Hz Infrasoon Bv. vulkaanuitbarstingen op grotere
afstand
20 Hz – 20 kHz Hoorbaar bereik Oor is meest gevoelig voor 2kHz tot 4 kHz
2 MHz – 10 MHz Medisch ultrasoon
10 MHz – 50 MHz Gespecialiseerde ultrasone Dermatologische/neonatologische
toepassingen toepassingen
Toepassingen bij kleine proefdieren
Druk en intensiteit
Energie van geluid veroorzaakt een verplaatsing van deeltjes en variatie in lokale druk in het medium
Druk amplitude P = piek maximum of minimum waarde druk = de gemiddelde druk in het medium bij
afwezigheid van een geluidsgolf = maximale verandering van druk door geluidsgolf
- SI eenheid: Pascal (Pa) = 1 N/m2.
- Diagnostische ultrasone golven: piek drukniveaus rond 1.5 MPa ~ 15 x de atmosferische druk
Akoestische intensiteit I = gemiddelde energie per tijdseenheid per oppervlakte-eenheid (loodrecht
op de voortplantingsrichting)
Relatie tussen intensiteit en druk: I ∝ P2
Intensiteitsniveaus bij medisch diagnostisch ultrageluid in eenheden van mW/cm 2
2
,Decibel (cB) schaal
Intensiteitsbereik menselijk oor: 10-12 tot 1 W/m2
Relatieve intensiteit (dB) ¿ 10 log 10 ( )
I
I0
met I0 de intensiteit van een gekozen referentieniveau.
- Menselijk gehoor: I0 = 10-12 W/m2 (gehoordrempel)
- Ultrasone beeldvorming (US): I0 = de intensiteit van de opgevangen echo
Uitwerking kennen van de volgende situaties (zie notities bij slide):
- Een verandering van 10 in de dB schaal = 1 ordegrootte (10x) meer in intensiteit.
- Een verandering van 20 in de dB schaal = 2 ordegroottes (100x) meer in intensiteit.
2. Interacties tussen ultrasone golven en
materie
Ultrasone interacties worden bepaald door de akoestische eigenschappen van materiaal.
Akoestische impedantie
Akoestische impedantie Z van een materiaal is gedefinieerd als:
Z = ρc
met ρ de dichtheid in kg/m3 en c de geluidssnelheid in m/s.
- SI eenheid: kg/(m2s); 1 rayl = 1 kg/(m2s).
- Akoestische impedantie = materiaaleigenschap die aangeeft hoeveel weerstand een
geluidsgolf ondervindt bij de voortplanting door het materiaal
- Bij lucht => zeer laag (weinig weerstand)
- Bij bot => zeer hoog (veel weerstand)
Reflectie
Aan de overgang van weefsel door het verschil in akoestische impedantie
Reflectiecoëfficiënt = fractie van de geluidsintensiteit v/e loodrechte golf dat gereflecteerd wordt
Voor loodrechte inval:
2
I r Z 2−Z 1
- Intensiteit reflectiecoëfficiënt R I = =( )
Ii Z2 + Z 1
- Intensiteit transmissiecoëfficiënt T I =1−R I
- met r = reflecterende golf & i = inkomende golf
3
, Bij de overgang lucht - weefsel: bijna 100% van de invallende intensiteit wordt
gereflecteerd (Z2 >> Z1) gebruik van akoestische gel tussen
transducer en de huid.
Als de golf loodrecht invalt op de weefselrand: productie van een echo (=teruggekaatste geluidsgolf)
Bij niet loodrechte inval (onder een hoek θi): reflectie over een hoek θr
θi = θr
Echo's worden weg van de transducer gereflecteerd en kunnen niet worden gedetecteerd.
Aanname: we veronderstellen een glad oppervlak tussen weefsels
- glad = de golflengte van de geluidsgolf >> structurele variaties aan de rand
Ultrasone golven met een hogere frequentie (= kortere golflengte):
- het oppervlak is niet langer “glad”
- echo’s worden diffuus verstrooid in het medium
- DUS kleinere fractie van de invallende intensiteit wordt teruggestuurd naar de transducer
Refractie
Verandering van richting van de doorgelaten golf (transmissie t)
Geluidsgolven doorheen weefsels:
- geen verandering van de frequentie
- verandering van de snelheid
De refractiehoek θt wordt bepaald door de verandering van de geluidssnelheid en door de hoek θi
van de invallende golf:
Indien c2 > c1, dan θt > θi
Indien c1 > c2, dan θt < θi
Examenvraag = Kun je op basis van de figuur zeggen welke geluidsnelheid C1/C2 het hoogst is?
Verstrooiing
Een speculaire reflector = glad oppervlakte tussen twee media
(altijd tov golflengte vd geluidsgolf)
Akoestische verstrooiing ontstaat bij objecten en overgangen die
de grootte van de golflengte of kleiner hebben (ruw of niet-
speculair reflectoroppervlakte)
4