Driehoeksmeting in willekeurige driehoeken
1. Cosinusregel en sinusregel voor willekeurige driehoeken
1.1 Cosinusregel
Definitie
De cosinusregel geeft het verband weer tussen de 3 zijden van een driehoek en de cos van een hoek.
Formules
a² = b² + c² - 2bc ⋅ cos Â
̂
b² = a² + c² - 2ac ⋅ cos B
c² = a² + b² - 2ab ⋅ cos Ĉ
Gebruik
De cosinusregel wordt gebruikt om de lengte van de derde zijde van een driehoek te berekenen als
de lengte van beide andere zijden en de grootte van hun ingesloten hoek gekend zijn.
Bewijs
Gegeven: ΔABC is rechthoekig
Te bewijzen: a² = b² + c² - 2bc ⋅ cos Â
Bewijs:
- Teken de hoogtelijn [BD]
- ΔBCD is rechthoekig, er geldt:
a² = |BD|² + |DC|² -> |DC| = b - |AD|
a² = |BD|² + (b - |AD|)² -> merkwaardig product: (A – B)² = a² - 2ab + b²
a² = |BD|² + b² - 2b ⋅ |AD| + |AD|² -> stelling van Pythagoras in ΔBAD (c² = |BD|² + |AD|²)
|AD|
a² = b² + c² - 2b ⋅ |AD| -> in ΔBAD: cos  = of |AD| = c ⋅ cos Â
c
a² = b² + c² - 2bc ⋅ cos  -> a² = b² + c² - 2bc ⋅ cos  = a² = b² + c² - 2bc ⋅ cos Â
1.2 Sinusregel
Definitie
In elke driehoek zijn de zijden evenredig met de sinussen van de overstaande hoeken. Dit noemen
we de sinusregel.
Formule
a b c
= ̂ = ̂
sin  sin B sin C
Gebruik
De sinusregel wordt gebruikt om de lengtes van de zijden van een driehoek te berekenen als de
hoeken en één zijde gekend zijn.
Bewijs
Gegeven: ΔABC is een scherphoekige driehoek
a b c
Te bewijzen: sin  = sin B̂ = sin Ĉ
Bewijs:
In ΔBAD geldt: In ΔBCD geldt:
|BD| |BD|
sin  = c
sin Ĉ = a
|BD| = c ⋅ sin  |BD| = a ⋅ sin Ĉ
c ⋅ sin  = a ⋅ sin Ĉ
c a
sin Ĉ = sin Â
, 1.3 Oplossen van willekeurige driehoeken
Drie zijden gegeven
Om de hoeken te berekenen maken we gebruik van de cosinusregel.
Twee zijden en de ingesloten hoek zijn gegeven
Bereken eerst de ontbrekende zijde met de cosinusregel.
Nadien bereken je de hoeken eveneens met de cosinusregel.
Eén zijde en twee hoeken zijn gegeven
Bereken eerst de ontbrekende hoek. (door 180° - α – β te doen)
Bereken nadien de zijden met behulp van de sinusregel.
2. Toepassingen
2.1 Lengte van een zwaartelijn
Gegeven:
In ΔABC is:
̂ = 80°
B
|AB| = 19 cm
|BC| = 24 cm
en BD een zwaartelijn.
Gevraagd:
Bereken de lengte van [BD].
Oplossing:
We werken in ΔABC:
̂
|AC|² = |AB|² + |BC|² − 2 ⋅ |AB| ⋅ |BC| ⋅ cos B
|AC|² = 19² + 24² − 2 ⋅ 19 ⋅ 24 ⋅ cos 80°
|AC| ≈ 27,90399
|BC|² = |AB|² + |AC|² − 2 ⋅ |AB| ⋅ |AC| ⋅ cos Â
|AB|² + |AC|² − |BC|²
cos  =
2 ⋅ |AB| ⋅ |AC|
19² + 27,90399² − 24²
cos  =
2 ⋅ 19 ⋅ 27,90399
 ≈ 57°53′ 22′′
We werken in ΔABD:
|AC|
|AD| = 2
≈ 13,952
|BD|² = |AB|² + |AD|² − 2 ⋅ |AB| ⋅ |AD| ⋅ cos Â
|BD|² = 19² + 13,952² − 2 ⋅ 19 ⋅ 13,952 ⋅ cos (57°53′ 22′′)
|BD| ≈ 16,54817
Antwoord:
|BD| is ongeveer 16,54817 cm.
1. Cosinusregel en sinusregel voor willekeurige driehoeken
1.1 Cosinusregel
Definitie
De cosinusregel geeft het verband weer tussen de 3 zijden van een driehoek en de cos van een hoek.
Formules
a² = b² + c² - 2bc ⋅ cos Â
̂
b² = a² + c² - 2ac ⋅ cos B
c² = a² + b² - 2ab ⋅ cos Ĉ
Gebruik
De cosinusregel wordt gebruikt om de lengte van de derde zijde van een driehoek te berekenen als
de lengte van beide andere zijden en de grootte van hun ingesloten hoek gekend zijn.
Bewijs
Gegeven: ΔABC is rechthoekig
Te bewijzen: a² = b² + c² - 2bc ⋅ cos Â
Bewijs:
- Teken de hoogtelijn [BD]
- ΔBCD is rechthoekig, er geldt:
a² = |BD|² + |DC|² -> |DC| = b - |AD|
a² = |BD|² + (b - |AD|)² -> merkwaardig product: (A – B)² = a² - 2ab + b²
a² = |BD|² + b² - 2b ⋅ |AD| + |AD|² -> stelling van Pythagoras in ΔBAD (c² = |BD|² + |AD|²)
|AD|
a² = b² + c² - 2b ⋅ |AD| -> in ΔBAD: cos  = of |AD| = c ⋅ cos Â
c
a² = b² + c² - 2bc ⋅ cos  -> a² = b² + c² - 2bc ⋅ cos  = a² = b² + c² - 2bc ⋅ cos Â
1.2 Sinusregel
Definitie
In elke driehoek zijn de zijden evenredig met de sinussen van de overstaande hoeken. Dit noemen
we de sinusregel.
Formule
a b c
= ̂ = ̂
sin  sin B sin C
Gebruik
De sinusregel wordt gebruikt om de lengtes van de zijden van een driehoek te berekenen als de
hoeken en één zijde gekend zijn.
Bewijs
Gegeven: ΔABC is een scherphoekige driehoek
a b c
Te bewijzen: sin  = sin B̂ = sin Ĉ
Bewijs:
In ΔBAD geldt: In ΔBCD geldt:
|BD| |BD|
sin  = c
sin Ĉ = a
|BD| = c ⋅ sin  |BD| = a ⋅ sin Ĉ
c ⋅ sin  = a ⋅ sin Ĉ
c a
sin Ĉ = sin Â
, 1.3 Oplossen van willekeurige driehoeken
Drie zijden gegeven
Om de hoeken te berekenen maken we gebruik van de cosinusregel.
Twee zijden en de ingesloten hoek zijn gegeven
Bereken eerst de ontbrekende zijde met de cosinusregel.
Nadien bereken je de hoeken eveneens met de cosinusregel.
Eén zijde en twee hoeken zijn gegeven
Bereken eerst de ontbrekende hoek. (door 180° - α – β te doen)
Bereken nadien de zijden met behulp van de sinusregel.
2. Toepassingen
2.1 Lengte van een zwaartelijn
Gegeven:
In ΔABC is:
̂ = 80°
B
|AB| = 19 cm
|BC| = 24 cm
en BD een zwaartelijn.
Gevraagd:
Bereken de lengte van [BD].
Oplossing:
We werken in ΔABC:
̂
|AC|² = |AB|² + |BC|² − 2 ⋅ |AB| ⋅ |BC| ⋅ cos B
|AC|² = 19² + 24² − 2 ⋅ 19 ⋅ 24 ⋅ cos 80°
|AC| ≈ 27,90399
|BC|² = |AB|² + |AC|² − 2 ⋅ |AB| ⋅ |AC| ⋅ cos Â
|AB|² + |AC|² − |BC|²
cos  =
2 ⋅ |AB| ⋅ |AC|
19² + 27,90399² − 24²
cos  =
2 ⋅ 19 ⋅ 27,90399
 ≈ 57°53′ 22′′
We werken in ΔABD:
|AC|
|AD| = 2
≈ 13,952
|BD|² = |AB|² + |AD|² − 2 ⋅ |AB| ⋅ |AD| ⋅ cos Â
|BD|² = 19² + 13,952² − 2 ⋅ 19 ⋅ 13,952 ⋅ cos (57°53′ 22′′)
|BD| ≈ 16,54817
Antwoord:
|BD| is ongeveer 16,54817 cm.