100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Complete samenvatting van het vak 'wiskunde voor ontwerpers'

Beoordeling
5,0
(1)
Verkocht
3
Pagina's
10
Geüpload op
23-02-2023
Geschreven in
2022/2023

Complete samenvatting van de cursus 'wiskunde voor ontwerpers', gegeven door Lieven Le Bruyn. Voldoende informatie om het examen kunnen af te leggen. Geschreven in eigenwoorden en volzinnen. (Geen kopie van de cursus/ppt's!)













Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 februari 2023
Aantal pagina's
10
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Table of Contents
1. Vorm en characteristiek............................................................................................................2
Euler characteristiek........................................................................................................................................2
Veelvlakken......................................................................................................................................................3
2. Symmetrie en orbifolds.............................................................................................................3
Orbifold............................................................................................................................................................4
Orbifold notatie...........................................................................................................................................4
Orbifold getal..............................................................................................................................................4
3. Ruimtelijke symmetrie..............................................................................................................5
Orbifold Shop...................................................................................................................................................5
4. Fries patronen...........................................................................................................................5
Soorten fries patronen....................................................................................................................................6
Enkel translatie symmetrie ∞∞..................................................................................................................6
Horizontale spiegel symmetrie ∞*.............................................................................................................6
Twee verticale spiegel symmetrieën *∞∞.................................................................................................6
Horizontale en twee verticale spiegel symmetrieën *22∞........................................................................6
Rotatie over 180° en twee verticale spiegel symmetrieën 2*∞.................................................................6
Twee rotaties over 180° 22∞,.....................................................................................................................6
Glij spiegeling ∞x........................................................................................................................................6
5. Vlakke symmetrie.....................................................................................................................7
6. Plannen en veelvlakken............................................................................................................8
7. Wiskunde voor vouwers...........................................................................................................8
8. Vouwen voor ontwerpers.......................................................................................................10
Soorten vouwen............................................................................................................................................10
9. Opvouwbare ontwerpen.........................................................................................................10




1

, 1. Vorm en characteristiek
Om een oppervlak te beschrijven stellen we een veelvlak op met een driehoekig raster (Mesh).

De driehoeken liggen op een specifieke manier ten opzichte van elkaar:
- Ofwel een hoekpunt gemeenschappelijk.
- Ofwel een zijde gemeenschappelijk.
- Ofwel hebben ze niets gemeenschappelijk. (Disjunct)
 Dit noemen we de triangulatie van het oppervlak.

We noemen een zijde van een driehoek uit de triangulatie:
- ‘Gewone’ zijde die grenst aan juist twee driehoeken
- Randzijde die grenst aan slechts één driehoek.

 Euler characteristiek
Euler characteristiek van een oppervlak: x=V −E+ F
- V = Aantal hoekpunten van het raster.
- E = Aantal zijden van het raster.
- F = Aantal driehoeken van het raster.

Het euler characteristiek is een eigenschap van het oppervlak, en hangt niet af van de gekozen mesh

Wanneer we het raster van de triangulatie plat maken, bekomen we een veelhoek.
 De ‘gewone’ zijde van de triangulatie zal twee keer moeten voorkomen als zijde van de veelhoek,
want er grenzen in de triangulatie twee driehoeken aan die zijde.
 De randzijde van de veelhoek die corresponderen met een gewone zijde, zullen moeten
worden geplakt. Dit kan ofwel in dezelfde-, ofwel in de tegenovergestelde richting.




Kegel Cilinder Möbius-Band Torus Sfeer

1 0 0 0 2

- Men bekomt één veelhoek, dus de aantal driehoeken F zal altijd 1 zijn.
- Aantal zijdes zijn te berekenen door te identificeren welke zijdes er nog overblijven.
- Aantal hoekpunten zijn te berekenen door te identificeren of de hoekpunten met iets
geplakt worden.

De oppervlakken die we tot nu toe hebben, kunnen we allemaal voorstellen in de ruimte.
 We hebben ook oppervlakken die snij-zijden zullen forceren. Zij zullen ruimte zichzelf snijden en
aan drie of meer driehoeken grenzen. Deze zijn enkel te construeren in 4 dimensies.



Crosscap Fles van Klein
1 2

2

,Een gesloten oppervlak kan geconstrueerd worden in de ruimte als corresponderende zijden in
tegengestelde richting voorkomen als we langs de rand van de veelhoek lopen.
 Een gesloten oppervlak is een oppervlak zonder rand.

Enige construeerbare gesloten oppervlakken zijn de sfeer, torus of een aaneenschakeling van g tori.
Genus (g): Aantal gaten in het oppervlak, die te halen is uit het Euler-getal. (2g = 2 – x)

 Veelvlakken
Veelvlak: Gesloten ruimtelijke figuren waarvan elk hoekpunt volledig omringd is door een zijvlak en
elke ribbe de grens is van juist twee zijvlakken.
Convex: In elk hoekpunt is de som van de binnenhoeken van de zijvlakken < 360°
Concaaf: In sommige hoekpunten is de som van de binnenhoeken van de zijvlakken > 360°
 Concaaf hoekpunt: Het oppervlak zal langs de twee kanten van het punt verschillend liggen.

 Elk convex veelvlak kunnen we opblazen tot het een sfeer wordt. Omdat de euler characteristiek
van een sfeer gelijk is aan 2, zal dit ook gelden voor elk convex veelvlak. (V – E + F = 2)

Platonisch: Een convex veelvlak waarvan alle zijvlakken regelmatige n-hoeken zijn, en er in elk
hoekpunt evenveel zijvlakken toekomen.

Er zijn juist 5 platonische veelvlakken:




tetraheder kubus octaheder dodecaheder icosaheder

Archimedisch: Een convex veelvlak waarvan elk zijvlak een regelmatige veelhoek is, en er in elk
hoekpunt dezelfde types van veelvlakken voorkomen.
 Zo is elk platonisch veelvlak ook een archimedisch veelvlak, met toevoeging van:



Prisma Anti-prisma
 Hiernaast zijn er nog juist 13 andere archimedische veelvlakken.

2. Symmetrie en orbifolds
Vlakke symmetrieën:
- Rotatie: Vlak wordt gespiegeld rond een rotatie-punt met een bepaalde rotatie-hoek.
- Spiegeling: Vlak wordt gespiegeld ten opzichte van een rechte, de spiegel-as.
Het beeld is het punt op de loodlijn op de rechte op zelfde afstand van de spiegel-as.
- Translatie: Vlak wordt gespiegeld door het figuur te verschuiven in een vaste richting over
een vaste afstand.
- Glij-spiegeling: Samenstelling van een spiegeling ten opzichte
van een rechte gevolgd door een translatie in de richting van de rechte.

- Samenstelling van twee spiegelingen met snijdende assen geeft een rotatie met als centrum
het snijpunt van de assen en als hoek tweemaal de hoek tussen de assen.
- Samenstelling van twee spiegelingen met evenwijdige assen geeft een translatie in de
richting loodrecht op de assen en afstand tweemaal de afstand tussen de assen.

3
blokverband

,  Orbifold
Orbifold: Minimaal deel van het patroon waaruit het volledige patroon te krijgen is door alle
symmetrieën erop te laten werken. Elk punt van het patroon kan door een symmetrie naar een punt
in de orbifold gebracht worden.
 Er zullen extra identificaties moeten toegepast worden, omdat we willen dat elk punt van de
orbifold een uniek punt is. Er zijn geen twee punten in de orbifold verbonden door een symmetrie.

Vb. Elk punt van de symmetrie ligt in het groene- of het rode vlak en op zijn beurt in het kleinste
stuk van de orbifold. Het is belangrijk dat de kleine zaken die nog overblijven geïdentificeerd worden

We hebben een rotatie over 90°, wat wil zeggen dat de 2 grijze zijdes naar elkaar gestuurd worden.
 In de orbifold willen we geen 2 punten die door een symmetrie in elkaar omgezet worden.
We identificeren de grijze zijden, die samenkomen in het blauwe punt, en merken dat deze een
kegel vormt. We noemen het blauwe punt daarom een kegelpunt. Hierbij zijn de rode zijden
randen die spiegelassen vormen, en het rode punt een kruispunt van deze spiegelassen.

180°
Kruispunt orde n: Punt waar n spiegels snijden. De hoek tussen de opeenvolgende spiegels is .
n
360°
Kegelpunt orde n: Het centrum van een rotatie-symmetrie over een hoek van die nooit op
n
een spiegel ligt. (Hierbij is dan orde 2 = 180°, orde 3 = 120°, orde 4 = 90°…)

 Orbifold notatie
Andere verschillende vlakke patronen kunnen juist dezelfde symmetrieën hebben als het blok-
verband, daarom gebruiken we een specifieke orbifold notatie.




 Orbifold getal
De notaties van alle mogelijke vlakke symmetrieën hebben een vast patroon,
en worden op verschillende manieren gedefinieerd:
- Zo verschilt de bijdrage aan V naar gelang de aard van het punt.
- Zo verschilt de bijdrage aan E van de aard van de zijde.
- Elk gebied, omringt door een veelhoek, heeft een bijdrage 1 aan F.  Bij ruimtelijke symmetrieën
noemt dit de spiegel zijde!!

Ruimtelijke symmetrie: Som hoeken is > 180° x orb > 0
Hyperbolische symmetrie: Som hoeken is < 180° x orb < 0
Vlakke symmetrie som hoeken is = 180° x orb = 0

 Het orbifold getal ( x orb) van elke vlakke symmetrie zal zo steeds 0 moeten zijn.




4

, 3. Ruimtelijke symmetrie
Een beperkte ruimtelijke structuur, wat de figuur ook is, kan altijd ingepakt worden in een sfeer.
Elke symmetrie van die figuur zal dan ook een symmetrie van de sfeer zijn.
 We zien wat de symmetrieën van het ruimtelijke object doen op de punten van de sfeer en
berekenen dan de orbifold van die actie.

De orbifold van de symmetrieën van een ruimtelijke figuur is de figuur op de sfeer die we krijgen
door uit elke orbit slechts één punt te nemen.

Orbit: De verzameling van een punt op de sfeer van alle punten die we krijgen door hierop de
Orbifold
symmetrieën (en samenstellingen hiervan) te laten werken.

Als een ruimtelijke figuur juist G symmetrieën heeft, dan is het orbifold getal van de bijhorende
2 Orbifold
orbifold gelijk aan: x orb = en dus is bijhorend 0 < x orb ≤ 2.
G

 Orbifold Shop
Kostprijs: Het verschil tussen de euler characteristiek van een sfeer (2) en het orbifold getal van het
symmetrie element. (Vb. Het verschil van het spiegel-element * en van de sfeer is 2 – 1 = 1)
 Dit levert op dat x orb =2−totale kost en dus bijhorend 0 ≤ kost < 2.
 Hoe meer symmetrieën worden toegevoegd, hoe lager het orbifold getal.

Dit laat toe om tussen alle mogelijke symbolen de gene uit te halen die net aan deze eis voldoen.

Classificatie van alle mogelijke ruimtelijke symmetrieën:
- De orbifold van een ruimtelijke symmetrie is ofwel één van:
*532, 532 (icosaheder), *432, 432 (kubus), *332, 332 (tetraheder), 3*2 (pyritoheder)
- Of behoort tot één van de 7 oneindige families (met n ≥ 1):
*22n, 22n, n* (prisma), *nn, nn (pyramide), 2*n, nx (anti-prisma) (met regelmatige n-hoeken)

4. Fries patronen
Fries patroon: Tekening op een vlak oppervlak dat zichzelf herhaalt in horizontale richting.
- Een translatie verschuift de figuur in een vaste richting over een vaste afstand.
- Mogelijke rotatie kan enkel over een hoek van 180° gaan, met het centrum op de middellijn.
- Mogelijke spiegelingen hebben enkel een horizontale en/of verticale as.
Periode: Minimale lengte van het patroon dat herhaalt wordt onder de translaties.

Hiermee kunnen we opnieuw de orbifold gaan berekenen. Belangrijk is dat we de orbifold niet
kunnen nemen in het vlak. We willen echter uitdrukken dat het patroon zich oneindig herhaalt in de
horizontale richting, met verticale rechten die evenwijdig lopen. We willen hierbij het perspectief
uitdrukken dat al deze rechten elkaar snijden in het limiet, een verdwijnpunt ‘op oneindig’.

Een fries patroon kan bekeken worden op een sfeer, waarbij de verticale lijnen van het patroon
grote cirkels worden die elkaar snijden in zenith en nadir (noord- en zuidpool). Afhankelijk of dit
translatie-rechten of spiegelassen zijn, zullen bijgevolg zenith en nadir kegel- of kruispunten worden
van de orbifold van orde ∞.
 Op deze manier kunnen we de regels van het orbifold getal uitbreiden.

Omdat een fries patroon een vlakke symmetrie is, moet de totale kostprijs gelijk zijn aan 2.
 Hierdoor kunnen we ook de orbifold shop uitbreiden.


5

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
anthonyroothaert Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
11
Lid sinds
2 jaar
Aantal volgers
7
Documenten
12
Laatst verkocht
3 maanden geleden

5,0

3 beoordelingen

5
3
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen