• TRANSPORT!!!
• Hart
o Motor, pomp → zonder hart kunnen we met ons cardiovasculair systeem helemaal niets doen
o Opgedeeld in 2 kanten door septum i/h midden v/h hart
o Rechtergedeelte → longcirculatie
o Linker gedeelte → lichaamscirculatie
o Kleppen zorgen voor afscheiding tss onze atria (boezems) en de ventrikels (kamers)
▪ Atria krijgt bloed die van de bloedvezels komen
▪ Ventrikels pompen bloed naar de vezels toe
o Vanuit de ventrikels naar de arteriën zitten semilunaire kleppen die zorgen dat ons bloed altijd in dezelfde richting zal gaan
• Bloedvatenstelsel
o Arteriën → grote bloedvaten die weggaan van ons hart
& uitmonden in arteriolen
o Arteriolen
o Capillairen → kleinste bloedvaten waar stofuitwisseling
plaatsvindt
o Venen → terug groter en komen terug in ons hart
terecht
o Pulmonaire circulatie:
▪ Bloedvaten die van de rechterventrikel
binnen het linker atrium treden
▪ 1. Vanaf de rechteratrium stroomt bloed
naar de rechterventrikel → van daar
stroomt het naar pulmonaire arteriën waar
het van O2 w voorzien
▪ 2. Door de pulmonaire venen verlaat bloed
de longen i/d richting v/h linker atrium →
longen fungeren als pomp
▪ 3. Van het linker atrium naar het
linkerventrikel w het bloed uitgepompt via
de aorta
▪ 4. De aorta vertakt zich in kleinere arteriën
die uiteindelijk eindigen in capillaire bedden
→ daar vindt uitwisseling plaats
▪ 5. Zo wordt bloed getransporteerd naar de
veneuze of zuurstofarme zijde → 1st
stromend van kleine venen die naarmate
men verder gaat groter w
o Systemische circulatie
▪ Bloedvaten die bloed transporteren v/h
linker gedeelte naar alle lichaamsweefsels
tot het rechterdeel v/h hart
▪ De venae cavae (sup & inf) monden uit i/h
rechter atrium
o Gesloten systeem waarin het bloed maar in 1 richting
kan bewegen
o Vertakkingen v/d aorta
▪ 1ste vertakking zijn de coronaire arteriën →
hart voorzien van bloed en voedingsstoffen
▪ Van de arteriën vloeit bloed naar capillairen die zo naar coronaire venen vloeien
1
,Waarom stroomt bloed?
• => omdat vloeistoffen & gassen op een drukgradiënt vloeien
• Dit gebeurt v/e regio met hoge druk naar regio met lage druk
• Aangezien bloed voortbeweegt is er een verlies van druk door de frictie tss bloed & bloedvatwand
• Hydrostatische druk
o Druk dat een vloeistof uitoefent op de
wanden v/e systeem
o Hoe verder we gaan v/d oorsprong (de
hoogste druk, gecreëerd door hart) → hoe
feller de druk zal verminderen (door de
wrijving tss bloed en bloedvatwand)
o Druk w gemeten in mmHg = equivalent aan
hydrostatische druk uitgeoefend door hoge
kolom v 1 mmHg op een opp. v 1cm2
• Gemiddelde arteriële druk
o Druk veroorzaakt door hart bij contraheren
(drijvende druk)
o Arteriën fungeren in druk reservoir bij hart
relaxatie
o Zal zorgen voor hartfrequentie
o Hoe verder van hart, hoe minder druk in
bloedcirculatie
• Drijvende druk v/h hart (driving pressure)
o Proces: de druk die veroorzaakt w door een
aangespannen spier w doorgegeven a/h
bloed → zo stroomt hogedrukbloed uit
ventrikel & i/d bloedvaten => bloed gaat al onder lage druk i/h bloedvat (verlies v energie)
o De contractie v bloed gevulde ventrikels i/h menselijke hart kan je vergelijken met een ballon (waterballon dat samengeperst w)
o Als de wanden v/e container vol met vloeistof uitbreiden → verlaagt de druk dat op die wanden w uitgeoefend => daarom daalt druk als
hart ontspant en uitbreid in de bloed gevulde kamers (hetzelfde voor bloedvaten)
• Bloed vloeit van hoge druk naar lage druk
o Vloeiing v vloeistof doorheen een buis is evenredig met de drukgradiënt (∆P)
▪ ∆P = P1 – P2
▪ Hoe groter P, hoe groter de stroom
o Vb1: absolute druk aan beide kanten = 100mmHg
→ geen drukgradiënt & geen stroom
o Vb2: 2 buizen
▪ Buis 1: hydrostatische druk = P1 =
100mmHg & P2 = 75mmHg => ∆P =
25mmHg
▪ Buis 2: hydrostatische druk = P1 =
40mmHG & P2 = 15mmHG => ∆P =
25mmHg
▪ ➔ de twee buizen hebben een lagere
absolute druk over de hele lengte
maar dezelfde drukgradiënt → omdat
verschil in druk gelijk is, is de stroom
ook gelijk
• Weerstand tegen stroom
o Stroom door een buis is omgekeerd evenredig met de weerstand (R)
o Cardiovasculair systeem heeft neiging om zich te verzetten tegen de bloedstroom
▪ Flow α 1/R
▪ Als de weerstand stijgt, daalt de stroom
2
,• Wet van Poiseuille
o Weerstand w beïnvloed door 3 parameters
▪ Omgekeerd evenredig met de straal v/d buis (r)
▪ Evenredig met de lengte v/d buis (L)
▪ Evenredig met viscositeit v/d vloeistof (η)
o R = 8.L.η/π.r4 MAAR omdat 8/π een constante is, kan de formule als volgt geschreven w
R α L .η/r4 OF R α 1/r4
o Deze formule verklaart dat:
▪ De weerstand v/e vloeistof stijgt als lengte v/d buis vergroot
▪ De weerstand stijgt als de viscositeit v/d vloeistof stijgt
▪ De weerstand daalt als de straal v/d buis stijgt
o Dus bij een vasoconstrictie: daling van diameter i/e bloedvat
▪ Gevolg: daling bloedstroom
o Bij een vasodilatie: stijging v diameter i/e bloedvat
▪ Gevolg: stijging v bloedstroom
o Formule hiervoor is flow α ∆P/R
o Of anders gezegd:
▪ Stroom i/h cardiovasculaire systeem = evenredig met de drukgradiënt ∆P
▪ Stroom is omgekeerd evenredig met de weerstand R v/d vloeiing v/h systeem
o Als de drukgradiënt constant blijft, dan varieert de bloedstroom omgekeerd evenredig met de weerstand
De snelheid is afhankelijk v/h debiet & de transversale oppervlakte
• Debiet (Q) = volume bloed dat door het systeem vloeit i.f.v. een bepaalde tijd → hoeveelheid bloed dat langs een punt stroomt (eenheid in L/min, cm 3
• Stroomsnelheid (v) = snelheid v stroom → hoe snel het bloed stroomt langs een bepaald punt
o v = Q/A
o ➔ vloeistof stroomt sneller door smalle wanden dan door weide wanden
3
, Hart
• Gemiddelde arteriële druk (MAP) w beïnvloedt door:
o Cardiac output → volume bloed dat hart pompt p/min
o Perifere weerstand → weerstand v/d bloedvaten tegen de doorbloeding ervan
• Ligging
o i/h centrum v/d thoracale holte
o apex punt uit aan de linkerkant v/h lichaam op het diafragma (puntig uitsteeksel)
o base ligt net achter het sternum (brede uiteinde)
o aan de ventrale zijde tss de 2 longen
• structuur
o omringd door pericardium (membraneuze zak gevuld met vloeistof)
o het grootste deel v myocardium gemaakt → bedekt met fijne laag epitheel & bindweefsel
o arteriële wand: dikker dan de ventriculaire wand
o linker ventriculaire wand is dikker dan de rechter wand (door de grotere afstand is er meer druk)
• grote venen hebben bepaalde kleppen zodat bloed enkel in 1 richting circuleert
o 2 soorten kleppen
▪ Atrioventriculaire klep (valva atrioventriculaire)
• Tss de atria & ventrikels
• Tricuspedale klep aan de rechterzijde v/h hart
• Bicuspedale klep (valva mitralis) aan de linkerkant
▪ Semilunaire klep
• Tss ventrikel & arteriën
• Arteriële klep
• Pulmonaire klep → ligt tss de rechter ventrikel & pulmonaire arterie
Hartspieren
• Myocardium
• Je kan ze verdelen in:
o Contractiele cellen
▪ Gestreepte vezels die georganiseerd zijn tot een sarcomeer
o Autorythmische cellen/pacemakers (=1%)
▪ Cellen die spontaan een actiepotentiaal generen
▪ Ze zijn in staat om te contraheren zonder externe signalen →daarom kan een hart na extractie v/h lichaam nog enkele minuten
kloppen
▪ Myogenische signalen zijn afkomstig v/h hartspieren zelf → de signalen komen v/d autorythmische cellen & niet het CZS
▪ Minder contractiele vezels vergeleken met de contractiele cellen
▪ Geen georganiseerde sarcomeren
• Eigenschappen myocardspieren
o Hebben 1 nucleus per vezel
o Ze vertakken & sluiten zich aan hun buurcel door intercallaire schijf
▪ Desmosomen maken het mogelijk dat krachten verder gevoerd w
▪ Gap junctions zorgen voor elektrische connectie
o T-tubuli zijn groter dan musculoskeletale spieren & ze vertakken nog
o Sarcoplasmatisch reticulum is groter
o Mitochondria maken 1/3de v/h cel volume
4