100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek Voor Bedrijfskundigen II Handelswetenschappen

Beoordeling
-
Verkocht
8
Pagina's
31
Geüpload op
01-09-2022
Geschreven in
2022/2023

Samenvatting Statistiek Voor Bedrijfskundigen II Handelswetenschappen












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
1 september 2022
Aantal pagina's
31
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistiek voor bedrijfskundigen II
Inleiding
1. Begrippen
Experimentele eenheden
• De bestudeerde objecten
• Bv. Studenten, machines, voetbalwedstrijden, ...
Populatie
• De verzameling experimentele eenheden
• bv. alle studenten aan de UGent, alle laptops die een bepaalde firma verkocht heeft, ...
Variabele
• Kenmerk of eigenschap van een individuele eenheid uit de populatie
• Bv. Lengte, levensduur, studieresultaat, ...
Steekproef
• Deelverzameling van de populatie
• Bv. 20 willekeurig gekozen studenten of laptops, ...
Statistische gevolgtrekking
• Veralgemening vanuit de steekproef naar de populatie
Betrouwbaarheidsmaat
• Uitspraak over de (on)zekerheid van de statistische gevolgtrekking

SOORTEN VARIABELEN
Kwantitatieve versus kwalitatieve variabelen
• Kwantitatieve: een getal (bv. Leeftijd)
• Kwalitatieve: een kenmerk (bv. Geslacht)
Discrete versus continue variabelen
• Discrete variabele: kan eindig of aftelbaar oneindig aantal verschillende waarden aannemen (bv.
Aantal studenten)
• Continue variabele: indien ook tussenliggende waarden mogelijk zijn (bv. Gewicht, afstand, …)
Nominale schaal (bv. geslacht)
+ ordening
= Ordinale schaal (bv. mening bij enquête: zeer goed, goed, matig, slecht, zeer slecht)
+ gelijke verschillen
= Intervalschaal (bv. temperatuur in °C)
+ natuurlijk nulpunt
= Ratioschaal (bv. inkomen)

STATISTISCHE TOEPASSINGEN
Beschrijvende statistiek = Beschrijven van verzamelde gegevens
• Grafische voorstellingen
o Staafjesdiagram
o Cirkeldiagram
o Boxplot
• Parameters
o Centrale tendentie – ligging
o Spreiding
Verklarende statistiek = Trekt conclusies over de gehele groep op basis van een deel (steekproef) van deze groep

PARAMETERS VAN LIGGING
Modus: de waarde van de variabele met het hoogste aantal waarnemingen (frequentie) (vb. haarkleur)

Mediaan: grenswaarde die de gerangschikte waarnemingen in twee gelijke groepen verdeelt (kunnen ordenen)
• Bij oneven aantal gegevens: de middelste waarneming

1

, • Bij even aantal gegevens: het rekenkundig gemiddelde van de twee middelste waarnemingen

Rekenkundig gemiddelde: de som van alle waarnemingen x1, x2, …, xn, gedeeld door het totaal aantal
waarnemingen n

PARAMETERS VAN SPREIDING
De variantie is de gemiddelde gekwadrateerde afwijking van de waarnemingen ten opzichte van het rekenkundig
gemiddelde.
De standaarddeviatie (of standaardafwijking) is de positieve vierkantswortel uit de variantie.

NOTITIE EN FORMULES




2. Stochastische variabelen
Definitie:
• Variabele die numerieke waarden aanneemt bij de toevallige uitkomsten van een experiment.
• Bij elke uitkomst wordt één en slechts één waarde aangenomen.
Twee soorten:
• Discrete stochastische variabelen
• Continue stochastische variabelen
Discrete kansveranderlijken
• Kunnen slechts een eindig of aftelbaar oneindig aantal waarden aannemen
• Bv. Aantal ogen bij een worp met een dobbelsteen
• Experiment: gelijktijdig opwerpen van twee eerlijke muntstukken.
• Stochastische variabele x: aantal keer kruis.
Continue kansveranderlijken
• Neemt een oneindig en niet aftelbaar aantal waarden aan, te vergelijken met een
interval of halfrechte op de reële getallenas
• Bv. Tijdsduur tussen 2 meldingen bij 112

KANSVERDELING EN KANSHISTOGRAM

Eigenschappen van de kansverdeling:
• p(x) ≥ 0 voor alle waarden van x
• ∑x p(x) = 1



SAMENVATTINGSWAARDEN
Verwachtingswaarde:
• gewogen gemiddelde van de mogelijke waarden van de variabele
• µ = E(x) = ∑ x p(x)
Variantie:
• gewogen gemiddelde van de gekwadrateerde afwijkingen t.o.v. µ
• σ2 = E [ (x − µ)2 ] = ∑ (x − µ)2 p(x)
Standaardafwijking:
• σ = √ σ2
2

,CONTINUE KANSVERANDERLIJKE
De functie f(x) – die we de (kans)dichtheidsfunctie noemen – neemt hier de rol over van het kanshistogram bij
discrete stochastische variabelen.




Eigenschappen:





Opmerkingen



SAMENVATTINGSMATEN




3. Verdelingen: binomiale verdeling (discreet), normale verdeling (continu), benaderen
BINOMIAAL EXPERIMENT
Gekenmerkt door:
1. Rij van n identieke deelexperimenten
2. Elk deelexperiment heeft twee uitkomsten: s (‘succes’) en m (‘mislukking’)
3. De kans op s (en dus ook op m) is dezelfde bij elk deelexperiment.
4. De deelexperimenten zijn onafhankelijk van elkaar.
Aantal “successen” in een binomiaal experiment noemt men een binomiale stochastische variabele.

BINOMIALE KANSVERDELING



Waarbij
• n = aantal deelexperimenten
• x = aantal keer “succes”; x is een element van {0,1,2,…,n}
• p = vaste kans op succes per deelexperiment
Voorbeeld
• Rol 5 keer achter elkaar een dobbelsteen en noteer het aantal keer dat je meer dan vier ogen hebt.
• Wat is de kans dat dit aantal gelijk is aan 4?




3

, •


EIGENSCHAPPEN BINOMIALE VERDELING
Verwachtingswaarde: Variantie:




Standaardafwijking:


NORMALE VERDELING: BELANG
• Goede beschrijving van heel wat stochastische variabelen, bv:
o Maandelijks rendement van een aandeel
o Scores op vaardigheidstest
o Wekelijkse omzet van een onderneming
• Vaak gebruikt als benadering van discrete kansverdelingen, zoals de binomiale.
• Vormt de basis van de verklarende statistiek.

NORMALE VERDELING
• Continu
• Heuvelvormig en symmetrisch
• Verwachtingswaarde, mediaan en modus vallen samen.
• Heeft oneindig bereik
Kansdichtheidsfunctie:


Met
• µ = verwachtingswaarde
• σ = standaardafwijking van de bijbehorende normaal verdeelde stochastische
variabele

STANDAARDNORMALE VERDELING
• Normale verdeling met µ = 0 en σ = 1
• Notatie: z
• Dichtheidsfunctie:
Eigenschap (oefeningen):
• Stel x is normaal verdeeld met µ en σ
• Dan is z = (x - µ) / σ standaardnormaal verdeeld

OEFENINGEN OPLOSSEN
• Praktische regels:
o P[ X < -a ] = P[ X > a ] SPIEGELEN
o P [ X > a ] = 1 – P [ X < a] COMPLEMENT
• Vaak handig om een figuur te maken

BENADERING
• In sommige gevallen kan de binomiale verdeling benaderd worden door een normale verdeling:



4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LouiseBakkers Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
55
Lid sinds
3 jaar
Aantal volgers
47
Documenten
21
Laatst verkocht
7 maanden geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen