100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Electricity and Magnetism

Beoordeling
-
Verkocht
3
Pagina's
86
Geüpload op
29-01-2022
Geschreven in
2021/2022

Full summary of "Fysica : Elektromagnetisme" which is a course seen in 2nd year bachelor of chemistry in Vrije Universiteit Brussel It is a resume that was made from the textbook Physics for Scientists and Engineers from Randall D. Knight

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Part vi electricity and magnetism (chapter 22 --> chapter 32)
Geüpload op
29 januari 2022
Aantal pagina's
86
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Chapter 22 : Electric charges and forces



Coulomb’s Law
The forces between 2 charged particles 𝒒𝟏 and 𝒒𝟐 separated by distance 𝒓 are :
𝐾|𝑞1 ||𝑞2 |
𝐹1 𝑜𝑛 2 = 𝐹2 𝑜𝑛 1 =
𝑟2
1
Where 𝐾 = is called the electrostatic constant
4𝜋𝜀0

- Coulomb’s law applies only to point charges
- Electric forces, like other forces, can be superimposed
- The forces are repulsive for 2 like charges, attractive for 2 opposite charges



The Charge Model
There are two kinds of charge, positive and negative :
- Fundamental charges are protons and electrons, with charge ±𝑒 with 𝑒 being the
fundamental unit of charge (𝑒 = 1.60 ∙ 10−19 𝐶)
- Objects are charged by adding or removing electrons
→ Charge varies by discrete steps , not continuously (=charge quantization)
- The amount of charge is 𝑞 = (𝑁𝑝 − 𝑁𝑒 )𝑒
- A neutral object has no charge
- Charge is neither created nor destroyed (=law of conservation of charge)

There are two types of material, insulators and conductors :
- Charge remains fixed in or on an insulator
- Charge moves easily through or along conductors
- Charge is transferred by contact between objects

NOTE Both insulators and conductors can be charged, they differ in the mobility of the charge

Charged objects attract neutral objects :
- Charge polarizes metal by shifting the electron sea
- Charge polarizes atoms, creating electric dipoles
- The polarization force is always an attractive force

,The Electroscope




The process by which an electroscope is charged :




The Field Model
Charges interact with each other via the electric field 𝐸⃗ :
- Charges alter the space around themselves by creating an electric field
- The field is the agent that exerts a force

An electric field is identified and measured in terms of the force on a positive probe charge 𝑞 :
𝐹𝑜𝑛 𝑞
𝐸⃗ =
𝑞
- The electric field exists at all points in space
- An electric field vector shows the field only at one point, the point at the tail of the vector

,Chapter 23 : The Electric Field

Point Charge (with charge 𝑞)
The force that a point charge 𝑞 exerts on a probe charge 𝑞′ is equal to
1 𝑞𝑞′
𝐹⃗𝑜𝑛 𝑞′ = ( , 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑞)
4𝜋𝜀0 𝑟 2
The electric field of the source charge 𝑞 is then equal to
𝐹⃗𝑜𝑛 𝑞′ 1 𝑞
𝐸⃗⃗ = = 𝑟̂
𝑞′ 4𝜋𝜀0 𝑟 2
𝐶2
With 𝑟̂ being a vector unit pointing away from source charge 𝑞 and 𝜀0 = 8,55 ∙ 10−12 𝑁𝑚2

Multiple charges
Electric fields obey the principle of superposition

Limiting cases




(𝐸𝑛𝑒𝑡 )𝑧 = 0 → in the 𝑥𝑦-plane
(𝐸𝑛𝑒𝑡 )𝑦 = 0 → 𝐸1 and 𝐸3 have equal magnitudes and tilted with same angle 𝜃
(𝐸𝑛𝑒𝑡 )𝑥 = (𝐸1 )𝑥 + (𝐸2 )𝑥 + (𝐸3 )𝑥 = 2(𝐸1 )𝑥 + (𝐸2 )𝑥

1 𝑞2 1 𝑞
(𝐸2 )𝑥 = 𝐸2 = 2 = (𝑟2 = 𝑥)
4𝜋𝜀0 𝑟2 4𝜋𝜀0 𝑥 2
1 𝑞1
(𝐸1 )𝑥 = 𝐸1 cos 𝜃 = cos 𝜃
4𝜋𝜀0 𝑟12
𝑟1 and 𝜃 both vary with position 𝑥 𝑥
𝑥, they need to be expressed in Pythagorean Theorem : 𝑟1 = √𝑥 2 + 𝑑 2 cos 𝜃 = =
𝑟1 √𝑥 2 + 𝑑 2
function of 𝑥
1 𝑞 𝑥 1 𝑥𝑞
(𝐸1 )𝑥 = =
4𝜋𝜀0 𝑥 + 𝑑 √𝑥 2 + 𝑑2 4𝜋𝜀0 (𝑥 2 + 𝑑2 )32
2 2



𝑞 1 2𝑥
(𝐸𝑛𝑒𝑡 )𝑥 = 2(𝐸1 )𝑥 + (𝐸2 )𝑥 = ( 2+ 3)
4𝜋𝜀0 𝑥 (𝑥 2 + 𝑑2 )2
𝑞 1 2𝑥
𝐸⃗⃗𝑛𝑒𝑡 = ( 2+ 3) î
4𝜋𝜀0 𝑥 (𝑥 2 + 𝑑2 )2

, 2 cases :
- 𝑥 ≪ 𝑑 (𝑥 → 0)
Becomes a single point charge 𝑞 at the origin (𝐸⃗⃗1 and 𝐸⃗⃗3 become opposite and cancel)
2𝑥
lim 3 =0 (approximating 0)
𝑥→0 (𝑥 2 +𝑑2 )2
1 𝑞
→ 𝐸𝑛𝑒𝑡 = 4𝜋𝜀 𝑥2
= Field of single point charge
0
1
In no 𝑑, thus no approximation
𝑥2


- 𝑥 ≫ 𝑑 (𝑥 → ∞)
The field is zero in the limit 𝑥 → ∞. Doesn’t tell much, 𝑥 just has to be very large in
comparison to the spacing 𝑑 between the source charges.
Then the denominator of the second term is well approximated by :
3 3
(𝑥 2 + 𝑑2 )2 ≈ (𝑥 2 )2 = 𝑥 3
1 2𝑥 1 2𝑥 3
Thus, lim (𝑥 2 + 3 ) = 𝑥2 + 𝑥3 = 𝑥2
𝑥≫𝑑 (𝑥 2 +𝑑 2 )2
1 3𝑞
𝐸⃗⃗𝑛𝑒𝑡 = 4𝜋𝜀 î this is the electric field op a point charge 3𝑞
0 𝑥2


Dipole
Two equal but opposite charges ±𝑞 separated by a small distance 𝑠 form an electric dipole :
- Permanent electric dipole (ex. water molecule)
- Induced electric dipole (polarizing a neutral atom with an external electric field)

(𝐸𝑑𝑖𝑝𝑜𝑙𝑒 )𝑦 = (𝐸+ )𝑦 + (𝐸− )𝑦
1 𝑞 1 (−𝑞)
= 2 +
4𝜋𝜀0 1 4𝜋𝜀0 1 2
(𝑦 − 2 𝑠) (𝑦 + 2 𝑠)

𝑞 1 1
= ( 2 − )
4𝜋𝜀0 1 1 2
(𝑦 − 2 𝑠) (𝑦 + 2 𝑠)

𝑞 2𝑦𝑠
(𝐸𝑑𝑖𝑝𝑜𝑙𝑒 )𝑦 = ( )
4𝜋𝜀0 1 2 1 2
(𝑦 − 2 𝑠) (𝑦 + 2 𝑠)

In practice, electric field of a dipole always observed at distances 𝑦 ≫ 𝑠, distances much larger
than the charge separation.
1 2 1 2
Denominator can be approximated (𝑦 − 2 𝑠) (𝑦 + 2 𝑠) ≈ 𝑦 4
1 2𝑞𝑠
(𝐸𝑑𝑖𝑝𝑜𝑙𝑒 )𝑦 ≈
4𝜋𝜀0 𝑦 3
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
simongabay

Maak kennis met de verkoper

Seller avatar
simongabay Vrije Universiteit Brussel
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
3 jaar
Aantal volgers
3
Documenten
2
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen