Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Advanced Analytics in a Big Data World (D0S06B)

Note
-
Vendu
2
Pages
91
Publié le
12-03-2025
Écrit en
2023/2024

Samenvatting van de volledige cursus op basis van de notities en slides voor het vak Advanced Analytics in a Big Data World (D0S06B) HIR(B) 2e master. Geslaagd eerste zit.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
12 mars 2025
Nombre de pages
91
Écrit en
2023/2024
Type
Resume

Aperçu du contenu

ADVANCED ANALYTICS
Prof. Seppe vanden Broucke




KU Leuven

,TABLE OF CONTENTS
Table of Contents...................................................................................................................................1
1 Introduction........................................................................................................................................4
1.1 Setting the Scene.........................................................................................................................4
1.2 Components of Data Science.......................................................................................................4
1.3 Process, People, and Problems....................................................................................................5
2 Preprocessing and Feature Engineering..............................................................................................7
2.1 Preprocessing Steps.....................................................................................................................7
2.2 Feature Engineering...................................................................................................................10
2.3 Conclusion.................................................................................................................................10
3 Supervised Learning..........................................................................................................................12
3.1 (Logistic) Regression..................................................................................................................12
3.2 Decision and Regression Trees...................................................................................................13
3.3 K-NN...........................................................................................................................................15
4 Model Evaluation..............................................................................................................................16
4.1 Introduction...............................................................................................................................16
4.2 Classification Performance.........................................................................................................16
4.3 Regression Performance............................................................................................................19
4.4 Cross-Validation and Tuning......................................................................................................19
4.5 Additional Notes........................................................................................................................20
4.6 Monitoring and Maintenance....................................................................................................21
5 Ensemble Modelling: Bagging and Boosting.....................................................................................23
5.1 Introduction...............................................................................................................................23
5.2 Bagging......................................................................................................................................23
5.3 Boosting.....................................................................................................................................24
5.4 Comparing Bagging and Boosting..............................................................................................25
6 Interpretability..................................................................................................................................26
6.1 Introduction...............................................................................................................................26
6.2 Feature importance...................................................................................................................26
6.3 Partial Dependence Plots...........................................................................................................27
6.4 Individual Conditional Expectation plots....................................................................................27
6.5 LIME...........................................................................................................................................27
6.6 Shapley values...........................................................................................................................28
6.7 Conclusion.................................................................................................................................28


1

,7 Deep Learning Part 1: Foundations and Images................................................................................29
7.1 Introduction...............................................................................................................................29
7.2 Foundations of artificial neural networks..................................................................................30
7.3 Delving deeper into Artificial Neural Networks..........................................................................31
7.4 The convolutional architecture..................................................................................................33
7.5 Interpretation of convolutional neural networks.......................................................................35
7.6 Generative models for images...................................................................................................37
8 Unsupervised Learning.....................................................................................................................45
8.1 Frequent itemset and association rule mining...........................................................................45
8.2 Clustering...................................................................................................................................47
8.3 Dimensionality reduction...........................................................................................................50
8.4 Anomaly detection.....................................................................................................................51
9 Data Science Tools............................................................................................................................53
9.1 In-memory analytics..................................................................................................................53
9.2 Python and R..............................................................................................................................53
9.3 Visualization...............................................................................................................................53
9.4 The road to big data...................................................................................................................54
9.5 Notebooks and development environments.............................................................................54
9.6 Labeling......................................................................................................................................55
9.7 File formats................................................................................................................................55
9.8 Packaging and versioning systems.............................................................................................57
9.9 Model deployment....................................................................................................................58
10 Hadoop, Spark, and Streaming Analytics........................................................................................61
10.1 Introduction.............................................................................................................................61
10.2 Hadoop: HDFS and MapReduce...............................................................................................61
10.3 Spark: SparkSQL and MLlib......................................................................................................64
10.4 Streaming analytics and other trends......................................................................................67
11 Deep Learning Part 2: Text, Representation Learning and Recurrence...........................................69
11.1 Traditional approaches............................................................................................................69
11.2 Word embeddings and representational learning...................................................................70
11.3 Recurrent neural networks (RNN)............................................................................................73
11.4 From RNNs to Transformers....................................................................................................75
11.5 Conclusion...............................................................................................................................77
12 Graph Analytics...............................................................................................................................78
12.1 Graph construction.................................................................................................................78
12.2 Graph metrics..........................................................................................................................78

2

, 12.3 Community mining...................................................................................................................79
12.4 Making predictions: Relational learners..................................................................................80
12.5 Making predictions: Featurization...........................................................................................82
12.6 Example...................................................................................................................................82
12.7 A word on validation................................................................................................................82
12.8 Node2vec and deep learning...................................................................................................83
12.9 Tooling.....................................................................................................................................86
12.10 NoSQL....................................................................................................................................86
12.11 Graph databases....................................................................................................................87
13 Wrap Up..........................................................................................................................................89
13.1 Key pitfalls................................................................................................................................89
13.2 Closing......................................................................................................................................90




3
€10,46
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
rikteugels Katholieke Universiteit Leuven
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
54
Membre depuis
2 année
Nombre de followers
8
Documents
6
Dernière vente
1 mois de cela

4,5

2 revues

5
1
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions