Thermodynamica 2
H1: Enthalpie
Eerste hoofdwet van de thermodynamica:
- ∆𝑈 = 𝑄 + 𝑊 = 𝑄 − 𝑝 * ∆𝑉
→ met 𝑊 = − 𝑝 * ∆𝑉
Arbeid kan geschreven worden op verschillende manieren:
- 𝑊 = 𝑓 * ∆𝑙
- 𝑊 = 𝑚 * 𝑔 * ∆ℎ
Interne energie U:
- is een toestandsfunctie
- verzameling van verschillende energievormen:
→ kinetische energie: vibraties, translatie, rotaties
→ potentiële energie: chemische bindingsenergie
- is NIET rechtstreeks meetbaar
Warmte en arbeid:
- geen toestandsfunctie, ze beschrijven de overdracht van energie van en naar een
systeem
- uitgewisselde warmte is wel meetbaar bij een toestandsverandering:
→ 𝑄 = ∆𝑈 + 𝑊
Def. enthalpie (H) = de warmte toestand van een systeem.
Doordat tijdens de reactie er gas gevormd wordt stijgt de druk en/of het volume:
- uitgewisselde warmte: 𝑄 = ∆𝑈 + ∆(𝑝 * 𝑉)
- bij constante druk: 𝑄 = (𝑈 + 𝑝 * 𝑉 ) − (𝑈 + 𝑝 * 𝑉 )
2 2 1 1
- toestanden U2 + PV2 en U1 + PV1 worden gedefinieerd als de enthalpie van het
systeem:
→𝐻 = 𝑈 * 𝑝 * 𝑉
De uitgewisselde warmte bij constante druk is gelijk aan het enthalpieverschil tussen
toestand A en B:
- 𝑄𝑝 = ∆𝐻
-
1
, Bij een bomcalorimeter is het volume constant:
- het meet de verbrandingswarmte
- 𝑄 = ∆𝑈 − 𝑝 * ∆𝑉 ⇒ 𝑄𝑣 = ∆𝑈 = ∆𝐻
→ uitgewisselde warmte 𝑄 = 𝐶 * ∆𝑇, is gelijk aan de verandering van de interne
𝑣 𝑐𝑎𝑙
energie (∆U) en gelijk aan het enthalpieverschil (∆H)
- een vlam calorimeter:
→ meet reactiewarmte bij chemische reacties
- een differentiële scan calorimeter:
→ meet warmtecapaciteit en warmte overdracht bij toestandsveranderingen
→ temperatuur wordt gelijkmatig verhoogd / verlaagd
Warmtecapaciteit:
- = de hoeveelheid interne energie die wordt toegevoegd / afgevoerd aan het systeem
bij temperatuursverhoging / verlaging
𝑄𝑣
- 𝐶𝑣 = ∆𝑇
𝑄𝑝 𝑝*𝑉
- 𝐶𝑝 = ∆𝑇
= 𝐶𝑣 + ∆(𝑛 * 𝑅) = 𝐶𝑣 + ∆( 𝑇
)
→ bij gasvorming verschillen deze waardes enorm, bij vaste stoffen en vloeistoffen
zijn ze ongeveer gelijk
Warmtecapaciteit is afhankelijk van de massa:
1) specifieke warmtecapaciteit:
- 𝑄𝑝 = 𝑚 * 𝑐𝑠 * ∆𝑇
𝑐 𝐽
- cs staat in 𝑚 𝑜𝑓 𝑘*𝑚𝑜𝑙
2) molaire warmtecapaciteit:
- 𝑄𝑝 = 𝑛 * 𝑐𝑚 * ∆𝑇
𝑐 𝐽
- cm staat in 𝑛 𝑜𝑓 𝑘*𝑔
Warmtecapaciteit is afhankelijk van de temperatuur:
−2
- wordt beschreven als een polynoom: 𝑐 = 𝑎 + 𝑏𝑇 + 𝑐𝑇
𝑠
−2
- om de warmte te berekenen: 𝑄 = 𝑛 * 𝑐 * ∆𝑇 = 𝑛 * (𝑎 + 𝑏𝑇 + 𝑐𝑇 ) * ∆𝑇
𝑝 𝑚
→ deze moet geïntegreerd worden:
𝑏 2 2 1 1
𝑄𝑝 = 𝑛 * (𝑎 * (𝑇2 − 𝑇1) + 2
* (𝑇2 − 𝑇1) − 𝑐 * ( 𝑇 − 𝑇1
))
2
θ
Enthalpie verandering (∆𝐻 ):
- = de standaardtoestand van een stof bij een gegeven temperatuur is zijn zuivere
vorm bij 1 bar
- vb. C is zuiver grafiet, CO2 is zuiver koolzuurgas, Hg is zuiver vloeibaar kwik,...
2
H1: Enthalpie
Eerste hoofdwet van de thermodynamica:
- ∆𝑈 = 𝑄 + 𝑊 = 𝑄 − 𝑝 * ∆𝑉
→ met 𝑊 = − 𝑝 * ∆𝑉
Arbeid kan geschreven worden op verschillende manieren:
- 𝑊 = 𝑓 * ∆𝑙
- 𝑊 = 𝑚 * 𝑔 * ∆ℎ
Interne energie U:
- is een toestandsfunctie
- verzameling van verschillende energievormen:
→ kinetische energie: vibraties, translatie, rotaties
→ potentiële energie: chemische bindingsenergie
- is NIET rechtstreeks meetbaar
Warmte en arbeid:
- geen toestandsfunctie, ze beschrijven de overdracht van energie van en naar een
systeem
- uitgewisselde warmte is wel meetbaar bij een toestandsverandering:
→ 𝑄 = ∆𝑈 + 𝑊
Def. enthalpie (H) = de warmte toestand van een systeem.
Doordat tijdens de reactie er gas gevormd wordt stijgt de druk en/of het volume:
- uitgewisselde warmte: 𝑄 = ∆𝑈 + ∆(𝑝 * 𝑉)
- bij constante druk: 𝑄 = (𝑈 + 𝑝 * 𝑉 ) − (𝑈 + 𝑝 * 𝑉 )
2 2 1 1
- toestanden U2 + PV2 en U1 + PV1 worden gedefinieerd als de enthalpie van het
systeem:
→𝐻 = 𝑈 * 𝑝 * 𝑉
De uitgewisselde warmte bij constante druk is gelijk aan het enthalpieverschil tussen
toestand A en B:
- 𝑄𝑝 = ∆𝐻
-
1
, Bij een bomcalorimeter is het volume constant:
- het meet de verbrandingswarmte
- 𝑄 = ∆𝑈 − 𝑝 * ∆𝑉 ⇒ 𝑄𝑣 = ∆𝑈 = ∆𝐻
→ uitgewisselde warmte 𝑄 = 𝐶 * ∆𝑇, is gelijk aan de verandering van de interne
𝑣 𝑐𝑎𝑙
energie (∆U) en gelijk aan het enthalpieverschil (∆H)
- een vlam calorimeter:
→ meet reactiewarmte bij chemische reacties
- een differentiële scan calorimeter:
→ meet warmtecapaciteit en warmte overdracht bij toestandsveranderingen
→ temperatuur wordt gelijkmatig verhoogd / verlaagd
Warmtecapaciteit:
- = de hoeveelheid interne energie die wordt toegevoegd / afgevoerd aan het systeem
bij temperatuursverhoging / verlaging
𝑄𝑣
- 𝐶𝑣 = ∆𝑇
𝑄𝑝 𝑝*𝑉
- 𝐶𝑝 = ∆𝑇
= 𝐶𝑣 + ∆(𝑛 * 𝑅) = 𝐶𝑣 + ∆( 𝑇
)
→ bij gasvorming verschillen deze waardes enorm, bij vaste stoffen en vloeistoffen
zijn ze ongeveer gelijk
Warmtecapaciteit is afhankelijk van de massa:
1) specifieke warmtecapaciteit:
- 𝑄𝑝 = 𝑚 * 𝑐𝑠 * ∆𝑇
𝑐 𝐽
- cs staat in 𝑚 𝑜𝑓 𝑘*𝑚𝑜𝑙
2) molaire warmtecapaciteit:
- 𝑄𝑝 = 𝑛 * 𝑐𝑚 * ∆𝑇
𝑐 𝐽
- cm staat in 𝑛 𝑜𝑓 𝑘*𝑔
Warmtecapaciteit is afhankelijk van de temperatuur:
−2
- wordt beschreven als een polynoom: 𝑐 = 𝑎 + 𝑏𝑇 + 𝑐𝑇
𝑠
−2
- om de warmte te berekenen: 𝑄 = 𝑛 * 𝑐 * ∆𝑇 = 𝑛 * (𝑎 + 𝑏𝑇 + 𝑐𝑇 ) * ∆𝑇
𝑝 𝑚
→ deze moet geïntegreerd worden:
𝑏 2 2 1 1
𝑄𝑝 = 𝑛 * (𝑎 * (𝑇2 − 𝑇1) + 2
* (𝑇2 − 𝑇1) − 𝑐 * ( 𝑇 − 𝑇1
))
2
θ
Enthalpie verandering (∆𝐻 ):
- = de standaardtoestand van een stof bij een gegeven temperatuur is zijn zuivere
vorm bij 1 bar
- vb. C is zuiver grafiet, CO2 is zuiver koolzuurgas, Hg is zuiver vloeibaar kwik,...
2