100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary inferential statistics (Exam part 2)

Puntuación
-
Vendido
1
Páginas
35
Subido en
02-06-2025
Escrito en
2024/2025

This document provide a summary of the material of the Inferential Statistic course for part 2, in preparation to the second exam. The notes include material from lectures, microlectures and the following book: van den Berg, S. M. (2021). Analysing Data using Linear Models. (5 ed.) University of Twente.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
2 de junio de 2025
Número de páginas
35
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Summary Statistics part 2
R-helpdesk


Week 6: Lecture: Multivariate Linear models, interaction
and non-linearity
Multivariate Linear Regression Model
Multivariate linear regression= used to estimate the relationship between two or more
independent variables and one dependent variable

Residuals

➢ Residuals should be normal and equal (across the lines and between the groups)
➢ Residuals are added/subtracted from the one line they pertain to
➢ Difficult to observe in a plot --> Store the residuals as data and inspect them in
additional plots

Interaction/moderation effect
• Variables have different intercepts
• Variables have different slopes

Non-linearity in linear models
➢ Linear models allow to study non-linear relationships
➢ The effect changes with the independent variable

Two ways to solve non-linearity:

1. Adding a square in the equations (quadratic term)
2. Using a logarithmic transformation

Unit 550 – Multiple regression addition: the effect of two variables
Addition regression models= variables are independently having an impact on a
dependent variable

The effect of a dummy and a ratio variable on a scale(ratio) variable
Example: Effects of education and family type upbringing on emotional intelligence

, • 𝛽0 = intercept of both groups when family type is 0
• 𝛽0 + 𝛽2 = intercept when family type is 1
• Education (𝛽1) has the same effect in both groups = parallel lines

Linear equation:




When analyzing data, always check:
1. Independent cases condition
2. Random selection of cases
3. Normal distribution
a. Residuals should be normal and equal
4. (10% condition) = if the population is huge and you select more than 10% you can't
use inferential statistics

Hypothesis in multiple regression: two types of expectations
General expectation:
➢ R² and F-test
H0: 𝛽2 = 𝛽1 = 0 (variables have no effect)
H1: at least one 𝛽 is not 0

Specific expectation(s):
➢ b-coefficients and t-test
H0: 𝛽... = 0 (variable has no effect)
H1: 𝛽... ≠ 0 (variable has an effect)

,Conclusion:
• Education has the same effect on Emotional Intelligence
• Family type upbringing has an effect - explains differences in Emotional intelligence

The effect of two ratio variables on a scale(ratio) variable
Example: Determinants of Ageism




• When you get older, your prejudice against other elderly goes down
• With more education, prejudice decrease




• Intercept (𝛽0) = level of Ageism if BOTH Age AND Education are 0
o Differences in Education are shown by differences in the intercept
• Age (𝛽1) has the same effect over all groups= parallel lines

Linear equation: addition
Addition= we add the effect of two variables to understand the dependent variable

, • 𝛽0 + 𝛽2= intercept
• 𝛽1= effect

When analyzing data, always check:
• Residuals: not possible to check using simple visual inspection
• Direction: check if b's are positive or negative

Studying residuals in a multivariate context
Residuals in a multivariate context are explained by both independent variables

➢ Residuals are added/subtracted from the one line they pertain to
➢ Difficult to observe in a plot --> Store the residuals as data and inspect them in
additional plots

Residuals should be:

➢ Normal distribution
➢ Equal variance everywhere in the model (across the lines and between the groups)

Why is it important to check if residuals are 'problematic'?

• Maybe not linearity
• Maybe other factors play a role too
• Standard errors used for inference will be 'wrong'

Steps for checking residuals
1. Check 'overall' normality in a histogram
2. Checking residuals with all x variables and y variables in the dataset/model
$12.38
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
annazanini2001 Universiteit Twente
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10
Miembro desde
1 año
Número de seguidores
0
Documentos
9
Última venta
1 semana hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes