100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Apuntes Matemáticas I (P02G120V01304)

Puntuación
-
Vendido
-
Páginas
7
Subido en
17-05-2022
Escrito en
2021/2022

Conceptos previos de matemáticas










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
17 de mayo de 2022
Número de páginas
7
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Marta perez
Contiene
Todas las clases

Vista previa del contenido

Matemáticas y su didáctica I
Curso 2021/22

NÚMEROS Y OPERACIONES: CONCEPTOS PREVIOS


1. Razonamiento matemático
1.1. Razonamiento inductivo. El razonamiento inductivo nos sirve para crear
y organizar información. Consiste en llegar a una conclusión basada en la evidencia
obtenida sobre ejemplos concretos, la conclusión se llama generalización.
Para demostrar que una generalización es cierta, requiere que demostremos que
una cierta propiedad es válida para todos los casos posibles, pero una generalización
puede demostrarse que es falsa si encontramos solo un contraejemplo.
Ejemplo 1.1.1. Piensa en la imagen de un oso, nuestra experiencia en documenta-
les, fotografías o zoológicos nos hace llegar a la conclusión que un oso es color negro,
marrón o incluso blanco. Sin embargo, existe un tipo de oso, el Glacier bear, que
es gris azulado y entonces existe un contraejemplo a la imagen del oso creada por
nuestras experiencias.
Desde etapas tempranas, se debe motivar a los estudiantes a razonar. Muchos
estudiantes creen que algo es cierto porque ha ocurrido antes, porque han visto
diversos ejemplos de ello o porque la propia experiencia hasta la fecha parece con-
firmarlo. Se debe aprender que, considerar una variedad de ejemplos no es suficiente
para establecer la verdad de una conjetura y que pueden existir contraejemplos
para refutar dicha conjetura. Cuando tenemos una variedad de ejemplos, se debe
aprender que podemos razonar sobre las propiedades de estos y sus relaciones entre
ellos.
Ejercicio 1.1.2. Considerar un círculo y por su borde (circunferencia) n puntos.
Unir cada par de estos puntos con un segmento de línea (cuerda), de tal manera que
no más de dos cuerdas se crucen en un solo punto, como muestra la Figura 1 :

Figura 1: Ejercicio de razonamiento inductivo




En conclusión, probablemente es cierto que hay 2n−1 regiones creando cuerdas
entre n puntos sobre un círculo. ¿Será cierta esta generalización?
1

, 2 NÚMEROS Y OPERACIONES: CONCEPTOS PREVIOS

Si crees que la generalización es válida intenta dar razones adicionales, si crees
que la generalización es falsa busca un contraejemplo.
n 2n−1 Regiones
1 20 1
1
2 2 2
3 22 4
Estrategias para usar el razonamiento inductivo:
1. Observa que la propiedad se verifique en algunos ejemplos.
2. Comprueba que la propiedad se verifica en más ejemplos. Además, intenta
encontrar un ejemplo para el cual la propiedad no se verifique (contraejemplo).
3. Si dicha propiedad se cumple para todos los ejemplos, esta propiedad es pro-
bablemente cierta en general.
1.2. Razonamiento mediante representaciones. Una representación es un
objeto que captura la información esencial que se necesita para entender y comuni-
car propiedades matemáticas y sus relaciones. Con frecuencia, esta representación
transmite información visual en forma de: gráficas, diagramas, mapas, tablas, etc.
También, esta representación es simbólica y así, una letra por ejemplo denota una
variable, una expresión algebraica o una ecuación. Asimismo, estas representaciones
pueden ser objetos físicos: cubos, palitos, etc.
Ejemplo 1.2.1. Todo número al cuadrado puede representarse como un cuadrado
de patrones de puntos:

Figura 2: Representación del cuadrado de un número




Ejercicio 1.2.2. Considera las siguientes sumas piramidales:
1=1
1+2+1=4
1+2+3+2+1=9
1 + 2 + 3 + 4 + 3 + 2 + 1 = 16
Podríamos concluir que la n-ésima suma piramidal es n2 . Representa la conclusión:
1 + 2 + 3 + · · · + (n − 1) + n + (n − 1) + · · · + 3 + 2 + 1 = n2
1.3. Proposiciones matemáticas. En matemáticas, una proposición es una
oración declarativa que es verdadera o falsa, pero no ambas cosas a la vez
Ejemplo 1.3.1. Son proposiciones:
• Pontevedra es una provincia de Galicia
• 1 − 100 = 99
6,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
maragarcía1

Conoce al vendedor

Seller avatar
maragarcía1 Universidade de Vigo
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
20
Última venta
-

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes