Absolute values :
Makes a number positive
→
symbol
:
/I /
/ ✗ I
{ 3C if 70
=
>(
xifxcoeg.i.IN -31 =3
2. N5A -11-51=0
3 .
%_÷ =/
R.T.PH/a-xA--ffx-apifa=3,x--aIa-xl
a
/ x -
at
=/ 3-41 =
14-31
=
I =
I
1=1
- :
/ a- xl =/ a- at
/ / {
I =
2- I 170 definition above
S × 2-
using
-
-
.
-
(x -
1) 2-1<0
={
× -1 xx
-2+1 2<1
Absolute value
equations
:
Remember abs value be
negative
:
can't
definition
e.
g. / I
-11=4 ÷ng
solve
•
I -1=4
-
I -170 •
-
(2-1)=4 x -
1<0
] Definition .
Solve
✗ =
5 271 2-1=-4 2<1
→
Check if answer fits 2=5
into restriction
Examples :
I .
It -31×+51=8 Isolate abs value , then 2 .
1×-11=-4 of
use definition
-
31×+51=-3 No solution
1×+51=1
-
✗ +5=1 DC1-5ZO . -
(2+5)=1 ✗ +5<0
2=-4 27-4 ✗ +5=-1 I < he
✗ =
-6
I
3 .
"tz =
I -
2x
/ 4-2×1=2 -
Lex
•
4-22=2 -
↳× ↳ -2×70 • -
(4-2×3=2 -
use 4-2×40
22=-2 -2×7-4 -4+22=2 -
Lex -2sec -4
I ZE2 62=6 I > 2
z=
-
✗ =/ I
N / A
Makes a number positive
→
symbol
:
/I /
/ ✗ I
{ 3C if 70
=
>(
xifxcoeg.i.IN -31 =3
2. N5A -11-51=0
3 .
%_÷ =/
R.T.PH/a-xA--ffx-apifa=3,x--aIa-xl
a
/ x -
at
=/ 3-41 =
14-31
=
I =
I
1=1
- :
/ a- xl =/ a- at
/ / {
I =
2- I 170 definition above
S × 2-
using
-
-
.
-
(x -
1) 2-1<0
={
× -1 xx
-2+1 2<1
Absolute value
equations
:
Remember abs value be
negative
:
can't
definition
e.
g. / I
-11=4 ÷ng
solve
•
I -1=4
-
I -170 •
-
(2-1)=4 x -
1<0
] Definition .
Solve
✗ =
5 271 2-1=-4 2<1
→
Check if answer fits 2=5
into restriction
Examples :
I .
It -31×+51=8 Isolate abs value , then 2 .
1×-11=-4 of
use definition
-
31×+51=-3 No solution
1×+51=1
-
✗ +5=1 DC1-5ZO . -
(2+5)=1 ✗ +5<0
2=-4 27-4 ✗ +5=-1 I < he
✗ =
-6
I
3 .
"tz =
I -
2x
/ 4-2×1=2 -
Lex
•
4-22=2 -
↳× ↳ -2×70 • -
(4-2×3=2 -
use 4-2×40
22=-2 -2×7-4 -4+22=2 -
Lex -2sec -4
I ZE2 62=6 I > 2
z=
-
✗ =/ I
N / A