UNIVERSITY OF NEWYORK AS & A Level
FURTHER MATHEMATICS 9231/22
Paper 2 Further Pure Mathematics 2 May/June 2025
2 hours
You must answer on the question paper.
You will need: List of formulae (MF19)
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● If additional space is needed, you should use the lined pages at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator this is strictly checked.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].
This document has 20 pages. Any blank pages are indicated.
© UCLES 2025 [Turn over
3
1 Find the roots of the equation z =-108 3 +108i, giving your answers in the form r`(cosƟ+isinƟ) where
r>0 and 0<Ɵ<2π. [5]
, 2
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
© UCLES 2025 9231/22/M/J/25
, 3
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
2 Find the Maclaurin’s series for e1+x2 +e1-x up to and including the term in x2 . [4]
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
© UCLES 2025 9231/22/M/J/2 [Turn over
FURTHER MATHEMATICS 9231/22
Paper 2 Further Pure Mathematics 2 May/June 2025
2 hours
You must answer on the question paper.
You will need: List of formulae (MF19)
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● If additional space is needed, you should use the lined pages at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator this is strictly checked.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].
This document has 20 pages. Any blank pages are indicated.
© UCLES 2025 [Turn over
3
1 Find the roots of the equation z =-108 3 +108i, giving your answers in the form r`(cosƟ+isinƟ) where
r>0 and 0<Ɵ<2π. [5]
, 2
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
© UCLES 2025 9231/22/M/J/25
, 3
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
2 Find the Maclaurin’s series for e1+x2 +e1-x up to and including the term in x2 . [4]
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
...................................................................................................................................................................
.
© UCLES 2025 9231/22/M/J/2 [Turn over