100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Modelling Computing Systems Chapter 11 Faron Moller & Georg Struth

Rating
1.0
(1)
Sold
-
Pages
5
Uploaded on
25-01-2021
Written in
2020/2021

Logic for Computer Science/Logic for Computer Technology Chapter 11 Summary of the book Modelling Computing Systems written by Faron Moller and Georg Struth. Summary written in English. Using examples and pictures, the substance and theory are clarified. Given at Utrecht University.

Show more Read less
Institution
Module









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 11
Uploaded on
January 25, 2021
Number of pages
5
Written in
2020/2021
Type
Summary

Subjects

Content preview

Hoofdstuk 11:

11.1 Labelled Transition Systems
A light can be either on or off. There is a switch that can be used to turn the light on
(if it is off) and turn the light off (if it is on). We can visualise this as follows. The lights
has 2 possible states, either On or Off. Mostly capital letters are used for states, the
On or Off state. Non capital are used for actions, the on or off action that trigger an transition from
one state to another.

A little more complicated to model is a vending machine. A simple vending machine
can dispense coffee or tea for 1 euro. There are two possible states:

− 0, no coin inserted
− 1, a coin has been inserted a drink may be selected.

There can be more than one action between different states.



Each of these examples are instances of a labelled transition system, a simple way to model a
computational process that can be in different states and shift between these states. More formally,
a labelled transition system consists of:

− A set States – corresponding to all the possible states of the system (like On or 1);
− A set Actions – corresponding to the labels between states;
− A relation on States × Actions × States corresponding to the possible transitions from one
𝑎
state to the next. We usually write 𝑠1 → 𝑠2 when this relation includes (s1, a, s2), or put
differently we can transition from state s1 to s2 by performing the action a.



Labelled transition system of the vending machine:

− States: {0, 1}
− Actions: {coin, coffee, tea}
− Transitions: {(0, coin, 1),(1, coffee, 0),(1, tea, 0)}


𝑎
We will write 𝑠1 → 𝑠2 when we can transition from s1 to s2 by the action a. When we cannot
transition from s1 to s2 with the action a, we sometimes write:



When there are no actions that transition from s1 to s2, we will write:

When there are no transitions from s to any other state, we will write:

We can easily extend our transition relation to work over lists of actions, rather than a single action.
This is useful to model a sequence of transition steps, rather than a single step, usually written 𝑠
𝑤
→ 𝑠′ , where w ∈ Action∗:

, ε
− 𝑠 → 𝑠, if there are no further actions to be taken, we stay at the state s.
aw a w
− 𝑠 → 𝑡, if 𝑠 → 𝑠′, ′and 𝑠′ → 𝑡, for some state s ′ , if we can take a single step from s to s ′
along a, and continue from s ′ to t by the word w, we can transition from s to t by aw.



A man needs to cross a river with a wolf, a goat, and a cabbage. His boat is only large enough to
carry himself and one of his three possessions, so he must transport them one at a time. However, if
he leaves the wolf and the goat together unattended, then the wolf will eat the goat; similarly, if he
leaves the goat and the cabbage together unattended, the goat will eat the cabbage. How can the
man get across safely with his possessions? We can model this problem as a labelled transition
system.

We want to model where the man, wolf, goat and cabbage are. Each can be on one side of the river,
but not both at the same time. We can model this by taking P({M, W, G,
C}) as our set of states. At a given state S, the elements of S have
successfully crossed the river. Initially, no one has crossed the river –
hence we are at the state ∅.

There are four possible actions: {m, g, c, w} corresponding to crossing
the river with the an empty boat (m), the goat (g), the cabbage (c), or
the wolf (w). The transitions each move the man (and possibly one of his
g
possessions) to the other side of the river. For example, MGC ≀≀≀ W →C
≀≀≀ MWG Finally, some states are ‘dangerous’ – when the wolf and goat
are unattended on one side of the river or the goat and cabbage are
unattended on one side of the river. On the right is the is the LTS of the
whole story.




11.3 A language for describing processes
Drawing smaller processes is fine but we would never draw the labelled transition system for even
moderately-complex processes. We need a proper language for describing bigger and more
complicated systems. A formal description language can also be programmed and analysed on a
machine. In this language we will have variables, such as Off, On, and Broken. We will also have
events or actions, such as pull, break and reset.



The zero process has one state, but no actions or transitions. We typically write 0 to
denote this ‘empty’ process.

Reviews from verified buyers

Showing all reviews
4 year ago

1.0

1 reviews

5
0
4
0
3
0
2
0
1
1
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
luukvaa Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
762
Member since
7 year
Number of followers
589
Documents
12
Last sold
1 day ago

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4.0

284 reviews

5
108
4
102
3
58
2
5
1
11

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions