Part 1 – Graph Theory (Study Units 1–6) .......................................................................................................2
1. Introduction to Graphs .................................................................................................................................2
2. Planar Graphs ...................................................................................................................................................3
3. Euler Cycles & Hamilton Circuits ..............................................................................................................4
4. Graph Colouring...............................................................................................................................................5
5. Trees .....................................................................................................................................................................6
6. Minimal Spanning Trees...............................................................................................................................6
, Part 1 – Graph Theory (Study Units 1–6)
1. Introduction to Graphs
Key Definitions:
• Graph: finite set of vertices 𝑉 and edges 𝐸 joining pairs of distinct vertices (no
loops/parallel edges).
• Vertex (node); Edge (link); Adjacent vertices; Incident edge; Order 𝑛 = |𝑉|;
Size 𝒆 = |𝑬|.
• Directed graph (digraph) – edges have direction; in-degree, out-degree.
• Path – sequence of distinct vertices/edges; Length = number of edges.
• Circuit – path returning to start vertex.
• Connected graph – path between every pair of vertices.
• Component – maximal connected subgraph.
• Degree 𝑑(𝑣) – number of neighbours; Isolated vertex – degree 0.
• Isomorphic graphs – same adjacency structure.
• Complete graph 𝐾𝑛 – all vertices adjacent.
• Bipartite graph – vertex set split into two independent sets;
Complete bipartite graph 𝐾𝑚,𝑛
• Complement – edges between all non-adjacent pairs.
• Subgraph – subset of vertices/edges.
Theorems:
• Edge-counting theorem: ∑𝑣∈𝑉 𝑑(𝑣) = 2𝑒 (undirected graphs). Proof uses each
edge contributing degree 2.
• Characterisation of bipartite graphs: A graph is bipartite ⇔ no odd-length
circuits.