100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Crouse 5: Molecular biology

Rating
-
Sold
1
Pages
37
Uploaded on
25-10-2020
Written in
2020/2021

A summary of the subject "molecular biology" of the 2nd year of Life Sciences. This summary has been made of 7 online lectures and it consists of 37 pages.

Institution
Module











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
Unknown
Uploaded on
October 25, 2020
File latest updated on
December 10, 2020
Number of pages
37
Written in
2020/2021
Type
Summary

Subjects

Content preview

Lesson 1 DNA: the genetic material & DNA replication

DNA: The inheritance material
Gregor Mendel
 Principle of mendelian inheritance
o Law of segregation: the two alleles for each gene are placed in different
gametes
o Law of independent assortment: the inheritance of one gene doesn’t affect
the inheritance of any other gene
o Law of dominance: When two different alleles are present, only one is
dominant and will be expressed

Thomas Hunt Morgan
 Famous for his experimental research with the fruit fly (Drosophila Melanogaster)
 Won the Nobel Prize in physiology and medicine is 1933 for his discoveries
concerning the role played by the chromosomes in heredity

Chromosomes
• Contain genetic information
• Consist of proteins and DNA
Proteins DNA
20 monomers (amino acids) 4 monomers (nucleotides)
Complex polymers Simple polymers
Heterogeneous Few variation

Which one, protein or DNA, carries the genetic material?
Experiment of Hershey and Chase in 1952
 Bacteriophage T2 experiment
 They used a bacteriophage, which is mainly made by a small
body. When is attaches to the surfaces of a bacterial cell, it
can transfer it’s DNA.

The molecular structure of nucleic acids (DNA and RNA)
Both DNA and RNA are polymers: the unit (monomer) is a nucleotide.
Each nucleotide consists of:
1. A pentose (5 carbon atoms) sugar
a. Deoxyribose (no O2 on carbon 2)
b. Ribose
2. A nitrogen containing base
a. Purine – adenine & guanine
b. Pyrimidine – cytosine, uracil (RNA) & thymine (DNA)
3. A phosphate group

Nucleoside = nucleotide – phosphate group




1

,The structure of a DNA nucleotide The structure of an RNA nucleotide
Called: deoxyadenosine 5’ - monophosphate Called: uridine 5’ - monophosphate




Molecular structure of a single DNA chain
 At the 5th carbon, you have the phosphate group attached
 The next phosphate is attached to the 3rd carbon of the previous pentose sugar
group and to the 5th carbon of the next pentose sugar group
o This bond is called the phosphodiester bond
 When you have a deoxyribose with an adenine, it’s a nucleoside, namely adenosine




James Watson and Francis Crick
 Famous for their discovery of the DNA double helix (in Cambridge, UK 1953)
 Won the Nobel Prize in physiology and medicine is 1933 for their discoveries
concerning the molecular structure of nucleic acids

X-ray diffraction pattern of Rosalind Franklin (1952)
 Rosalind did an X-ray on DNA where you can see the double helix → she’s not
awarded for a prize because she passed away
 Watson & Crick took her data to have an imagination of the structure


2

,Molecular structure of the DNA
 The 2 polynucleotide chains are oriented in opposite directions
 One strand runs in a 5’ to 3’ orientation, the other strand runs in a 3’ to
5’ orientation – they are anti-parallel (they show opposite polarity)

Base pairs are complementary
 Edwin Chargaff’s observation
 A and T are always equal
 G and C are always equal

Important observations
• Nitrogen bases are linked by
hydrogen bonds
• The chemical nature of these
bonds are different than covalent
bonds
• The bond G---C (3 hydrogen bonds)
is a stronger bond compared to the
A---T bond (2 hydrogen bonds)



Replication
Models for DNA replication – DNA replication is a semi-conservative process




DNA chain elongation
 DNA polymerase: enzyme that catalyzes the reaction of DNA replication
o Adds nucleotides to the new chain
o Adds 3 phosphate groups, but only attaches 1 phosphate group to the 3’
carbon end. It releases the other 2 phosphate groups, which is called
pyrophosphate
o Proofreading → checks & corrects wrong added nucleotide
o DNA polymerase cannot start its synthesis without a 3’-OH group available



3

, Initiation of replication
1. DnaA attaches to a specific repeat and make a distortion in
the whole molecule. Thereby, other repeats that are close to
that specific repeat enlarges and become available for the
attachment of other molecules, which are helicases
(unwinding DNA helix)
2. Once the helicases are activated, the replication starts. It will
create a replication fork (group of enzymes, including the
DNA polymerase, helicases, etc.) that are unwinding and
creating two new strands. DNA primases are also important
in this process; they create RNA primers (adding few
nucleotides) and giving availability to the 3’ group. DNA
polymerase cannot start its synthesis without a primer.

If the DNA polymerase is running from 5’ → 3’, how can it successfully copy the other
strand?
Leading strand (5’ → 3’): DNA replication goes continuously.
Lagging strand (3’ → 5’): the polymerase synthesizes the new DNA in pieces, these are
called Okazaki fragments. With this process, there will be some pieces of RNA. This will
be removed by DNA polymerase I. The Okazaki fragment will be “glued” together by
ligase. Because of the lagging strand, DNA replication is a semi-discontinuous process.

Replication in E. coli goes differently; because it has a circular chromosome, it’s able to
connect two forks on the opposite sides. This is called theta-replication.

The problem of replicating a linear chromosome completely
Polymerase I needs a 3’ group available. But at the end of the chromosome, there is no
3’ side, therefore, it will shorten. Chromosome ends contain specific DNA sequences,
which are telomeres. Telomere is a repetitive sequence → TTAGGG.
• It delays damage to genes
• Chromosome ends will not be recognized as double strands breaks in the DNA
• Cells with short telomere stops dividing
 Defensive mechanism against cancer: somatic cells have limited number of cell
divisions.
 Cancer cells also express telomerase
 Germ cells contain the enzyme telomerase. It maintains chromosome length by
adding telomere repeats (they need to maintain integrity)




4
£4.05
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
wendiy Hogeschool Arnhem en Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
5 year
Number of followers
6
Documents
12
Last sold
1 month ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions