100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Rating
-
Sold
-
Pages
1076
Grade
A+
Uploaded on
28-03-2025
Written in
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Institution
SM+TB
Module
SM+TB











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
SM+TB
Module
SM+TB

Document information

Uploaded on
March 28, 2025
Number of pages
1076
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

A First Course in Differential
Wi Wi Wi Wi Wi




Equations with Modeling Ap Wi Wi Wi




plications, 12th Edition by De Wi Wi Wi Wi




nnis G. Zill Wi Wi




Complete Chapter Solutions Manual ar
Wi Wi Wi Wi




e included (Ch 1 to 9)
Wi Wi Wi Wi Wi




** Immediate Download
Wi Wi




** Swift Response
Wi Wi




** All Chapters included
Wi Wi Wi

,SolutionWiandWiAnswerWiGuide:WiZill,WiDIFFERENTIALWiEQUATIONSWiWithWiMODELINGWiAPPLICATIONSWi2024,Wi9780357760192;WiChapte
rWi#1:




Solution and Answer Guide Wi Wi Wi




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
Wi Wi Wi Wi Wi Wi Wi


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS Wi Wi Wi Wi Wi Wi




TABLE OF CONTENTS WI WI




End of Section Solutions .................................................................................................................................... 1
Wi Wi Wi



Exercises 1.1 ........................................................................................................................................................ 1
Wi



Exercises 1.2 ......................................................................................................................................................14
Wi



Exercises 1.3 ......................................................................................................................................................22
Wi



Chapter 1 in Review Solutions ..................................................................................................................... 30
Wi Wi Wi Wi




END OF SECTION SOLUTIONS
WI WI WI




EXERCISES 1.1 WI




1. Second order; linear W i W i


4
2. Third order; nonlinear because of (dy/dx)
Wi Wi Wi Wi Wi



3. Fourth order; linear Wi Wi



4. Second order; nonlinear because of cos(r + u)
Wi Wi Wi Wi Wi Wi Wi


5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
Wi Wi Wi Wi Wi Wi Wi Wi

2
6. Second order; nonlinear because of R
Wi Wi Wi Wi Wi



7. Third order; linear Wi Wi


2
8. Second order; nonlinear because of ẋ
Wi Wi Wi Wi Wi



9. First order; nonlinear because of sin (dy/dx)
Wi Wi Wi Wi Wi Wi



10. First order; linear Wi Wi


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is no
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


nlinear in y because of y . However, writing it in the form (y —
2 2
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


1)(dx/dy) + x = 0, we see that it is linear in x.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see th
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


at it is linear in v. However, writing it in the form (v + uv —
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi



FromWiyWi=Wie− WiweWiobtainWiyjWi=Wi—W1 e−x/2.WiThenWi2yjWi+WiyWi=Wi—e−x/2Wi+Wie−x/2Wi=Wi0.
x/2 Wi
13. i
2

,SolutionWiandWiAnswerWiGuide:WiZill,WiDIFFERENTIALWiEQUATIONSWiWithWiMODELINGWiAPPLICATIONSWi2024,Wi9780357760192;WiChapte
rWi#1:


6 6 —
14. From y = Wi Wi — e we obtain dy/dt = 24e , so that
Wi Wi Wi Wi Wi Wi

5 5
WiWi
dy −20t 6 6 Wi

— −20t
5 Wi

e
3x
15. From y = e Wi Wi cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


12e 3x
Wi sin 2x, so that yjj — 6yj + 13y = 0.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi

j
16. From y = — Wi Wi Wi = —1 + sin x ln(sec x + tan x) and
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi

cos x ln(sec x + tan x) we obtain y
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi

jj
y W i = tan x + cos x ln(sec x + tan x). Then y
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi W i + y = tan x.
Wi Wi Wi Wi



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


we have Wi



j −
—x)y = (y — x)[1 + (2(x + 2) ]
W i Wi Wi Wi Wi Wi Wi Wi




−1/2
= y — x + 2(y —
Wi Wi Wi Wi Wi Wi




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi




= y — x + 8(x + 2)1/2
Wi Wi Wi Wi Wi Wi Wi
−1/2W i =WiyW i — WixWi+Wi8.


An interval of definition for the solution of the differential equation is (—
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


2, ∞) because yj is not defined at x = —2.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi W i Wi Wi Wi Wi


{x W i W i 5x /= π/2 + nπ}
Wi Wi Wi Wi



or {x Wi
W i
x /= π/10 + nπ/5}. Fromj y = 252 sec
Wi Wi Wi Wi Wi Wi W i Wi Wi W i 5x we have Wi Wi




2 2 2
y .

An interval of definition for the solution of the differential equation is (—
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


π/10, π/10). An- other interval is (π/10, 3π/10), and so on.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi



19. The domain of the function is {x
Wi 4 — x Wi Wi Wi Wi Wi Wi Wi /= 0} or {x
W i Wi Wi x /= —
W i W i


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
Wi Wi W i W i Wi Wi W i Wi Wi Wi Wi Wi


W i W i 1
yj = 2x Wi Wi W i = 2xy2.
Wi
2

4 — x2 Wi Wi



An interval of definition for the solution of the differential equation is (—
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 —
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi



sin x /= 0 or sin x /= 1.
Wi Wi Wi Wi Wi Wi Wi Wi Wi


Thus, the domain is {x x /= π/2 + 2nπ}. From y =2 — (1 — sin x) (— cos x) we have
Wi Wi Wi Wi W i Wi Wi Wi Wi Wi Wi Wi Wi W i Wi Wi Wi Wi Wi Wi Wi




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi Wi

, SolutionWiandWiAnswerWiGuide:WiZill,WiDIFFERENTIALWiEQUATIONSWiWithWiMODELINGWiAPPLICATIONSWi2024,Wi9780357760192;WiChapte
rWi#1: AnWiintervalWiofWidefinitionWiforWitheWisolutionWiofWitheWidifferentialWiequationWiisWi(π/2,Wi5π/2).WiAnot
her one is (5π/2, 9π/2), and so on.
Wi Wi Wi Wi Wi Wi Wi

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
agradesolutions Oxford University
Follow You need to be logged in order to follow users or courses
Sold
159
Member since
1 year
Number of followers
3
Documents
1613
Last sold
1 week ago

3.1

23 reviews

5
8
4
2
3
4
2
2
1
7

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions