SOLUTION MANUAL h
Finite Mathematics & Its Applications1
h h h h h
3th Edition by Larry J. Goldstein, Chapte
h h h h h h
rs 1 - 12, Complete
h h h h
, Contents
Chapter 1: Linear Equations and Straight Lines
h h h h h 1–1
Chapter 2: Matrices
h 2–1
Chapter 3: Linear Programming, A Geometric Approach
h h h h h 3–1
Chapter 4: The Simplex Method
h h h 4–1
Chapter 5: Sets and Counting
h h h 5–1
Chapter 6: Probability
h 6–1
Chapter 7: Probability and Statistics
h h h 7–1
Chapter 8: Markov Processes
h h 8–1
Chapter 9: The Theory of Games
h h h h 9–1
Chapter 10: The Mathematics of Finance
h h h h 10–1
Chapter 11: Logic
h 11–1
Chapter 12: Difference Equations and Mathematical Models
h h h h h 12–1
, Chapter 1h
Exercisesh1.1 5
6. Lefth1,hdownh
2
1. Righth2,huph3 y
y
(2,h 3)
x
x
( )
–1,2h–2522
7.h Lefth20,huph40
2. Lefth1,huph4 y
y
(–20,h 40)
(–1,h 4)
x
x
8.h Righth25,huph30
3.h Downh2 y
y
(25,h30)
x
x
(0,h –2)
9. PointhQ2ish2hunitshtohthehlefthandh2hunitshupho
4. Righth2
y rh(—2,h2).
10. PointhPhish3hunitshtohthehrighth andh2hunitshdownho
rh(3,—2).
x
(2,h 0) 1h
11. —2(1)h+h (3)h =h—2h+1h=h—1soh yesh theh pointh is
3
onhthehline.
5.h Lefth2,huph1 1
y 12. —2(2)h+h h (6)h =h—1hish false,h soh noh theh pointh ish not
3
onhthehline
(–2,h 1)
x
Copyrighth©h2023hPearsonhEducation,hInc. 1-1
, Chapter21:hLinearhEquationshandhStraighthLines ISM:hFinitehMath
1 24.h 0h=h5
13 —2xh+2 yh =h—1h Substituteh theh xh andh y nohsolution
3
. x-
coordinateshofhthehpointhintohthehequation: intercept:hnone
f1hhhh ıh f1 hhhh1
'hhh ,h3hh→ —2 ' ı +hhh (3)= —1h→ —1+1h= —1hhis
Whenhxh=h0,h yh=h5
y' ı 'hı y-intercept:h(0,h5)
2hhh J y2J 3
ahfalsehstatement.hSohnohthehpointhishnothonh 25.hWhenhyh=h0,hxh=h7
thheline. x-
fh1h fh1h intercept:h(7,h0)0
ı ı
1.h4 —2 ' +'h (—1)h=—1h ish trueh soh yesh theh pointh is =h7
nohsolution
'y3 ıJhhhh'y3ı y-intercept:hnone
Jhonhthehlin 26.h 0h=h–8x
e. xh=h0
15.h mh=h5,hbh=h8 x-intercept:h(0,h0)
yh=h–8(0)
16.h mh=h–2handhbh=h–6 yh=h0
y-intercept:h(0,h0)
17.h yh =h0xh+h3;hmh=h0,hbh=h3
2 2 1h
yh= xh+h0;h mh=h ,h bh=h0 27 0h =h xh –h1
18 3
. 3 3 .
xh=h3
19.h 14xh+7hyh =h21 x-intercept:h(3,h0)
1h
7hyh =—14xh +h21 yh =h (0)h –2h1
3
yh =h—2xh +3
yh=h–1
y-intercept:h(0,h–1)
20 xh—hyh =h3 y
. —yh =h—xh +3
yh =h xh—3
(3,h 0)
21.h h 3xh =h5 x
5 (0,h –1)
xh=h
3
1 2 28.h Whenhxh=h0,hyh=h0.
y2h=h10
22 – 2 xh+ 3 Whenhxh=h1,hyh=h2.
. 2h 1h y
yh =h xh+10
3 2
3
yh=hhh xh+15 (1,h 2)
4 x
(0,h 0)
23. 0h =h—4xh +8
4xh =h8
xh =h2
x-intercept:h(2,h0)
y2=h–4(0)h+h8
y2=h8
1-2 Copyright2©h2023hPearsonhEducation,hInc.
Finite Mathematics & Its Applications1
h h h h h
3th Edition by Larry J. Goldstein, Chapte
h h h h h h
rs 1 - 12, Complete
h h h h
, Contents
Chapter 1: Linear Equations and Straight Lines
h h h h h 1–1
Chapter 2: Matrices
h 2–1
Chapter 3: Linear Programming, A Geometric Approach
h h h h h 3–1
Chapter 4: The Simplex Method
h h h 4–1
Chapter 5: Sets and Counting
h h h 5–1
Chapter 6: Probability
h 6–1
Chapter 7: Probability and Statistics
h h h 7–1
Chapter 8: Markov Processes
h h 8–1
Chapter 9: The Theory of Games
h h h h 9–1
Chapter 10: The Mathematics of Finance
h h h h 10–1
Chapter 11: Logic
h 11–1
Chapter 12: Difference Equations and Mathematical Models
h h h h h 12–1
, Chapter 1h
Exercisesh1.1 5
6. Lefth1,hdownh
2
1. Righth2,huph3 y
y
(2,h 3)
x
x
( )
–1,2h–2522
7.h Lefth20,huph40
2. Lefth1,huph4 y
y
(–20,h 40)
(–1,h 4)
x
x
8.h Righth25,huph30
3.h Downh2 y
y
(25,h30)
x
x
(0,h –2)
9. PointhQ2ish2hunitshtohthehlefthandh2hunitshupho
4. Righth2
y rh(—2,h2).
10. PointhPhish3hunitshtohthehrighth andh2hunitshdownho
rh(3,—2).
x
(2,h 0) 1h
11. —2(1)h+h (3)h =h—2h+1h=h—1soh yesh theh pointh is
3
onhthehline.
5.h Lefth2,huph1 1
y 12. —2(2)h+h h (6)h =h—1hish false,h soh noh theh pointh ish not
3
onhthehline
(–2,h 1)
x
Copyrighth©h2023hPearsonhEducation,hInc. 1-1
, Chapter21:hLinearhEquationshandhStraighthLines ISM:hFinitehMath
1 24.h 0h=h5
13 —2xh+2 yh =h—1h Substituteh theh xh andh y nohsolution
3
. x-
coordinateshofhthehpointhintohthehequation: intercept:hnone
f1hhhh ıh f1 hhhh1
'hhh ,h3hh→ —2 ' ı +hhh (3)= —1h→ —1+1h= —1hhis
Whenhxh=h0,h yh=h5
y' ı 'hı y-intercept:h(0,h5)
2hhh J y2J 3
ahfalsehstatement.hSohnohthehpointhishnothonh 25.hWhenhyh=h0,hxh=h7
thheline. x-
fh1h fh1h intercept:h(7,h0)0
ı ı
1.h4 —2 ' +'h (—1)h=—1h ish trueh soh yesh theh pointh is =h7
nohsolution
'y3 ıJhhhh'y3ı y-intercept:hnone
Jhonhthehlin 26.h 0h=h–8x
e. xh=h0
15.h mh=h5,hbh=h8 x-intercept:h(0,h0)
yh=h–8(0)
16.h mh=h–2handhbh=h–6 yh=h0
y-intercept:h(0,h0)
17.h yh =h0xh+h3;hmh=h0,hbh=h3
2 2 1h
yh= xh+h0;h mh=h ,h bh=h0 27 0h =h xh –h1
18 3
. 3 3 .
xh=h3
19.h 14xh+7hyh =h21 x-intercept:h(3,h0)
1h
7hyh =—14xh +h21 yh =h (0)h –2h1
3
yh =h—2xh +3
yh=h–1
y-intercept:h(0,h–1)
20 xh—hyh =h3 y
. —yh =h—xh +3
yh =h xh—3
(3,h 0)
21.h h 3xh =h5 x
5 (0,h –1)
xh=h
3
1 2 28.h Whenhxh=h0,hyh=h0.
y2h=h10
22 – 2 xh+ 3 Whenhxh=h1,hyh=h2.
. 2h 1h y
yh =h xh+10
3 2
3
yh=hhh xh+15 (1,h 2)
4 x
(0,h 0)
23. 0h =h—4xh +8
4xh =h8
xh =h2
x-intercept:h(2,h0)
y2=h–4(0)h+h8
y2=h8
1-2 Copyright2©h2023hPearsonhEducation,hInc.