100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered

Rating
-
Sold
-
Pages
68
Grade
A+
Uploaded on
22-01-2025
Written in
2024/2025

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered

Institution
Game Theory Basics 1st Edition
Module
Game Theory Basics 1st Edition











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Game Theory Basics 1st Edition
Module
Game Theory Basics 1st Edition

Document information

Uploaded on
January 22, 2025
Number of pages
68
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS v v v




1 - Nim and Combinatorial Games
v v v v v




2 - Congestion Games
v v v




3 - Games in Strategic Form
v v v v v




4 - Game Trees with Perfect Information
v v v v v v




5 - Expected Utility
v v v




6 - Mixed Equilibrium
v v v




7 - Brouwer’s Fixed-Point Theorem
v v v v




8 - Zero-Sum Games
v v v




9 - Geometry of Equilibria in Bimatrix Games
v v v v v v v




10 - Game Trees with Imperfect Information
v v v v v v




11 - Bargaining
v v




12 - Correlated Equilibrium
v v v




2

,Game Theory Basics
v v




Solutions to Exercises
v v



©v BernhardvvonvStengelv2022

SolutionvtovExercisev1.1

(a) Letv≤vbevdefinedvbyv(1.7).v Tovshowvthatv≤visvtransitive,vconsidervx,vy,vzvwithvxv ≤vyvandvyv≤vz.vIfvxv=vyvthe
nvxv≤vz,vandvifvyv=vzvthenvalsovxv≤vz.vSovthevonlyvcasevleftvisvxv<vyvandvyv <vz,vwhichvimpliesvxv <vzvbecau
sev<visvtransitive,vandvhencevxv ≤vz.
Clearly,v≤visvreflexivevbecausevxv=vxvandvthereforevxv≤vx.
Tovshowvthatvvvvv≤isvantisymmetric,vconsidervxvandvyvwithvxvvvvvyvandvyvvvvv≤
x.vIfvwevhadvx≤v≠vyvthenvxv<vyva
ndvyv<vx,vandvbyvtransitivityvxv<vxvwhichvcontradictsv(1.38).vHencevxv=v y,vasvrequired.v Thisvshowsvt
hatv≤visvavpartialvorder.
Finally,vwevshowv(1.6),vsovwevhavevtovshowvthatvxv<vyvimpliesvxvvvyvandvxv≠vyvand ≤ vvicevversa.vLetvxv<vy,
vwhichvimpliesvxvyvbyv(1.7).vIfvwevhadvxv=vyvthenvxv<vx,vcontradictingv(1.38),vsovwevalsovhavevxv≠vy.v Co

nversely,vxvvv yvandvxv≠vyvimplyvbyv(1.7)vxv <v yvorv xv =v yvwherevthevsecond≤vcasevisvexcluded,vhencev xv <v y,v
asvrequired.
(b) Considervavpartialvordervandv≤ assumev(1.6)vasvavdefinitionvofv<.vTovshowvthatv<visvtransitive,vsupp
osevxv<vy,vthatvis,vxvyvandvxv≠vy,vandvyv<vz,vthat ≤ vis,vyvzvandvyv≠vz.vBecausevvvvisvtransitive,≤
vxvvvvz.vIfvwevhadv

xv=vzvthenv≤ xvvvvvyvandvyvvvvvxvandvhence≤ vxv=vyvbyvantisymmetryvofvvvv,≤ vwhichv contradictsv xv ≠v y,vsov wevhav

ev xvvvvzvandv xv ≠v z,vthatvis,vxv <v zvbyv(1.6),vasvrequired.
≤ ≤
Also,v<visvirreflexive,vbecausevxv<vxvwouldvbyvdefinitionvmeanvxvvvxvandvxv≠vx,vbut ≤ vthevlattervisvnotvtr
ue.
Finally,vwevshowv(1.7),vsovwevhavevtovshowvthatvxv ≤vyvimpliesvxv<vyvorvxv=vyvandvvicevversa,vgivenvtha
tv<visvdefinedvbyv(1.6).vLetvxv≤vy.vThenvifvxv=vy,vwevarevdone,votherwisevxv≠vyvandvthenvbyvdefinitionv
xv<vy.vHence,vxv≤vyvimpliesvxv<vyvorvxv=vy.vConversely,vsupposevxv <v yvorvxv=vy.v Ifvxv <v yvthenvxv ≤vyvbyv(
1.6),vandvifvxv=vyvthenvxv ≤v yvbecausev≤visvreflexive.v Thisvcompletesvthevproof.

SolutionvtovExercisev1.2

(a) Inv analysingv thev gamesv ofv threev Nimv heapsv wherev onev heapv hasv sizev one,v wev firstv lookvatvsomevexam
ples,vandvthenvusevmathematicalvinductionvtovprovevwhatvwevconjecturevtovbevthevlosingvpositions.vAvl
osingvpositionvisvonevwhereveveryvmovevisvtovavwinningvposition,vbecausevthenvthevopponentvwillvw
in.v Thevpointvofvthisvexercisevisvtovformulatevavprecisevstatementvtovbevproved,vandvthenvtovprovevit
.
First,vifvtherevarevonlyvtwovheapsvrecallvthatvtheyvarevlosingvifvandvonlyvifvthevheapsvarevofvequalvsi
ze.v Ifvtheyvarevofvunequalvsize,vthenvthevwinningvmovevisvtovreducevthevlargervheapvsovthatvbothvhe
apsvhavevequalvsize.




3

, Considervthreevheapsvofvsizesv1,vm,vn,vwherev1vvvvvmvvvvvn.vWe
≤ vobserve
≤ vthevfollowing:v1,v1,vmvisvwinni

ng,vbyvmovingvtov1,v1,v0.vSimilarly,v1,vm,vmvisvwinning,vbyvmovingvtov0,vm,vm.vNext,v1,v2,v3visvlosingv
(observedvearliervinvthevlecture),vandvhencev1,v2,vnvforvnv4visvwinning.v1,v3,vnvisvwinningvforvanyvnv
3vbyvmovingvtov1,v3,v2.vForv1,v4,v5,vreducingvanyvheapvproducesvavwinningvposition,vsovthisvisvlosi
≥ ≥
ng.
Thevgeneralvpatternvforvthevlosingvpositionsvthusvseemsvtovbe:v1,vm,vmv1,vforvevenvnumbers
+ vm.v Th

isvincludesvalsovthevcasevmv=v0,vwhichvwevcanvtakevasvthevbasevcasevforvanvinduction.v Wevnowvproce
edvtovprovevthisvformally.
Firstvwevshowvthatvifvthevpositionsvofvthevformv1,vm,vnvwithvmvvvvvvnvarevlosing ≤ vwhenvmvisvevenvandvnv
=vmv1,vthenvthesevarevthev+onlyvlosingvpositionsvbecausevanyvothervpositionv1,vm,vnv withvmv v nv isvwin
ning.v Namely,vifvmv =vnv then≤vavwinningvmovevfromv1,vm,vmvisvtov0,vm,vm,vsovwevcanvassumevmv<vn.v Ifvmvi
svevenvthenvnv>vmv v 1v(otherwisevwevwouldvbevinvthevpositionv1,vm,vmv v 1)vandvsovthevwinningvmovevis
+
vtov1,vm,v mv v 1.vIfv mvisvoddvthenvthevwinningvmovevisvtov1,vm,v mv1,vthevsamevasvpositionv1,vmv 1,vmv(thisv
+ +
wouldv alsov bev av winningv movev fromv 1,vm,vmv sov therev thev winningv movev isv notv unique).
– −
Second,vwevshowvthatvanyvmovevfromv1,vm,vmv+v1vwithvevenvmvisvtovavwinningvposition,vusingvasvinduc
tivevhypothesisvthatv1,vmJ,vmJv+v1vforvevenvmJvandvmJv<vmvisvavlosingvposition.vThevmovevtov0,vm,vmv+v
1vproducesvavwinningvpositionvwithvcounter-
movevtov0,vm,vm.vAvmovevtov1,vmJ,vmv+v1vforvmJv<vmvisvtovavwinningvpositionvwithvthevcounter-
movevtov1,vmJ,vmJv+v1vifvmJvisvevenvandvtov1,vmJ,vmJv−v1vifvmJvisvodd.vAvmovevtov1,vm,vmvisvtovavwinningv
positionvwithvcounter-
movevtov0,vm,vm.vAvmovevtov1,vm,vmJvwithv mJv<v mvisvalsovtovavwinningvpositionvwithvthevcounter-
movevtov1,vmJv−v1,vmJvifv mJvisvodd,vandvtov1,vmJv 1,vmJvifvmJvisvevenv(invwhichvcasevmJv 1v<vmvbecausevmvisv
even).vThisvconcludesvthevinductionvproof.
+ +
ThisvresultvisvinvagreementvwithvthevtheoremvonvNimvheapvsizesvrepresentedvasvsumsvofvpowersvofv2:v
1v v mv v nvisvlosing 0
vifvandvonlyvif,vexceptvforv2 ,vthevpowersvofv2vmakingvupvmvandvnvcomevinvpairs.vSovthe
∗v +∗ +∗
sevmustvbevthevsamevpowersvofv2,vexceptvforv1v=v20,vwhichvoccursvinvonlyvmvorvn,vwherevwevhavevassum
edvthatvnvisvthevlargervnumber,vsov1vappearsvinv thev representationv ofv n:v Wev havev mv =v 2avvvvvv2bvvvvvv2c
forv av >v bv >v cv >vvvvvvvv 1,vsov mv isv
a b c + + +v ·v ·v · ·v ·v·v ≥
even,v and,v withv thev samev a,vb,vc,v.v.v.,v nv =v 2 v v v
2 v v v
2 1v =v mvvvv 1.v Then
+ + +v ·v ·v ·v + +
∗1v vvvvvv
+v ∗mvvvvv+nv ∗vvvvvv 0.
≡vv∗Thev followingv isv anv examplev usingvthev bitvrepresentationv where
mv=v12v(whichvdeterminesvthevbitvpatternv1100,vwhichvofvcoursevdependsvonvm):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) Wevusev(a).vClearly,v1,v2,v3visvlosingvasvshownvinv(1.2),vandvbecausevthevNim-
sumvofvthevbinaryvrepresentationsv01,v10,v11visv00.vExamplesvshowvthatvanyvothervpositionvisvwin
ning.vThevthreevnumbersvarevn,vnv 1,vnv v 2.vIf+
vnvisvevenvthenvreducingvthevheapvofvsizevnv2vtov1vcreatesv
+
thevpositionvn,vnv 1,v1vwhichvisvlosingvasvshownvinv(a).vIfvnvisvodd,vthenvnv 1visvevenvandvnvvv2v=v nvvv1
+ +
vvv1vsovbyvthevsamevargument,vavwinningvmovevisvtovreducevthevNimvheapvofvsizevnvtov1v(whichvonl
+ + (v +v )v+
yvworksvifvnv >v1).




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
EliteScholars Teachme2-tutor
Follow You need to be logged in order to follow users or courses
Sold
39
Member since
11 months
Number of followers
6
Documents
994
Last sold
2 weeks ago
ACADEMIC HALL STORE!!!!

As a scholar you need a trusted source for your study materials and thats where we come in. Here you get TOP QUALITY; TESTBANKS, SOLUTION MANUALS, EXAMS &amp; OTHER STUDY MATERIALS!!!!!! 100% GUARANTEED Success When you purchase our documents, Please leave reviews so we can meet up to your satisfaction .''At academic hall store'' your good grades is our top priority!!!

4.9

235 reviews

5
230
4
2
3
1
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions