100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Solution Manual - Introductory Econometrics: A Modern Approach 8th Edition - (Wooldridge), Chapter 1 - 19 > Download as Pdf File <

Rating
-
Sold
-
Pages
307
Uploaded on
13-01-2025
Written in
2024/2025

******** INSTANT DOWNLOAD AS PDF FILE ******** Solution Manual - Introductory Econometrics: A Modern Approach 8th Edition - (Wooldridge), Chapter 1 - 19 &gt; Download as Pdf File &lt; 1. Solution manual for Wooldridge Introductory Econometrics 8th edition PDF 2. Introductory Econometrics Wooldridge 8th edition answers 3. Wooldridge Modern Approach 8th edition problem solutions 4. Step-by-step solutions Introductory Econometrics Wooldridge 8e 5. Econometrics homework help Wooldridge 8th edition 6. Wooldridge Introductory Econometrics 8th edition chapter solutions 7. Practice problems Introductory Econometrics Modern Approach 8e 8. Wooldridge 8th edition solution manual free download 9. Introductory Econometrics Wooldridge 8e answer key 10. Econometrics exam prep Wooldridge 8th edition solutions 11. Wooldridge Modern Approach 8th edition worked examples 12. Introductory Econometrics 8e Wooldridge solution manual online 13. Wooldridge 8th edition econometrics practice questions 14. Introductory Econometrics Modern Approach 8e study guide 15. Wooldridge 8th edition econometrics self-study solutions 16. Introductory Econometrics Wooldridge 8e problem set answers 17. Wooldridge Modern Approach 8th edition solution manual chegg 18. Econometrics Wooldridge 8e solution manual for sale 19. Introductory Econometrics 8th edition Wooldridge test bank 20. Wooldridge 8e econometrics solution manual reddit 21. Introductory Econometrics Modern Approach 8th edition errata 22. Wooldridge 8th edition econometrics solution manual quizlet 23. Introductory Econometrics Wooldridge 8e instructor resources 24. Wooldridge Modern Approach 8th edition solution manual scribd 25. Introductory Econometrics 8e Wooldridge solution manual amazon 1. Download Wooldridge Introductory Econometrics 8th Edition test bank pdf 2. Introductory Econometrics Modern Approach 8th solution manual 3. Wooldridge Econometrics 8th Edition answers pdf download 4. Test bank for Introductory Econometrics Wooldridge 8th Edition 5. Solution manual Introductory Econometrics Modern Approach 8th pdf 6. Wooldridge Econometrics 8th Edition practice problems with solutions 7. Introductory Econometrics 8th Edition chapter summaries pdf 8. Wooldridge Modern Approach 8th Edition exam questions and answers 9. Download Introductory Econometrics 8th Edition study guide pdf 10. Wooldridge Econometrics 8th Edition worked examples pdf 11. Introductory Econometrics Modern Approach 8th Edition answer key 12. Wooldridge 8th Edition Econometrics problem sets with solutions 13. Introductory Econometrics 8th Edition practice tests pdf download 14. Wooldridge Modern Approach 8th Edition chapter exercises solved 15. Introductory Econometrics 8th Edition solution manual free download 16. Wooldridge Econometrics 8th Edition step-by-step solutions pdf 17. Introductory Econometrics Modern Approach 8th Edition review questions 18. Wooldridge 8th Edition Econometrics case studies with solutions 19. Download Introductory Econometrics 8th Edition instructor resources 20. Wooldridge Modern Approach 8th Edition econometric models explained 21. Introductory Econometrics 8th Edition data sets and solutions pdf 22. Wooldridge Econometrics 8th Edition practice exams with answers 23. Introductory Econometrics Modern Approach 8th Edition formula sheet 24. Wooldridge 8th Edition Econometrics online solution manual access 25. Introductory Econometrics 8th Edition supplementary materials pdf

Show more Read less
Institution
Wooldridge Introductory Econometrics 8th Edition
Module
Wooldridge Introductory Econometrics 8th Edition

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Wooldridge Introductory Econometrics 8th Edition
Module
Wooldridge Introductory Econometrics 8th Edition

Document information

Uploaded on
January 13, 2025
Number of pages
307
Written in
2024/2025
Type
Other
Person
Unknown

Subjects

Content preview

SOLUTION MANUAL

,Introductory Econometrics: A Modern Approach 8th edition
Solution Manual
CONTENTS
Chapterk1 ThekNaturekofkEconometricskandkEconomickData 1

Chapterk2 ThekSimplekRegressionkModel 5

Chapterk3 MultiplekRegressionkAnalysis:k Estimation 15

Chapterk4 MultiplekRegressionkAnalysis:k Inference 28

Chapterk5 MultiplekRegressionkAnalysis:k OLSkAsymptotics 41

Chapterk6 MultiplekRegressionkAnalysis:k FurtherkIssues 46

Chapterk7 MultiplekRegressionkAnalysiskwithkQualitativek Inf 62
ormation:k Binaryk(orkDummy)kVariables

Chapterk8 Heteroskedasticity 79

Chapterk9 MorekonkSpecificationkandkDatakProblems 91

Chapterk10 BasickRegressionkAnalysiskwithkTimekSerieskData 102

Chapterk11 FurtherkIssueskinkUsingkOLSkwithkTimekSerieskData 114

Chapterk12 SerialkCorrelationkandkHeteroskedasticitykink T 127
imekSerieskRegressions

Chapterk13 PoolingkCrosskSectionskAcrosskTime.k Simplek Pan 139
elkDatakMethods

Chapterk14 AdvancedkPanelkDatakMethods 154

Chapterk15 InstrumentalkVariableskEstimationkandkTwokStagek Le 167
astkSquares

Chapterk16 SimultaneouskEquationskModels 183

Chapterk17 LimitedkDependentkVariablekModelskandkSamplek S 196
electionkCorrections

,Chapterk18 AdvancedkTimekSerieskTopics 217

Chapterk19 CarryingkOutkankEmpiricalkProject 233

AppendixkA BasickMathematicalkTools 234

AppendixkB FundamentalskofkProbability 236

AppendixkC FundamentalskofkMathematicalkStatistics 238

AppendixkD SummarykofkMatrixkAlgebra 242

AppendixkE ThekLinearkRegressionkModelkinkMatrixkForm 244

, CHAPTER 1 k




TEACHINGkNOTES

YoukhaveksubstantialklatitudekaboutkwhatktokemphasizekinkChapterk1.k Ikfindkitkusefulktoktalkkaboutk thek
economicskofkcrimekexamplek(Examplek1.1)kandkthekwagekexamplek(Examplek1.2)ksokthatk studentskse
e,katkthekoutset,kthatkeconometricskisklinkedktokeconomickreasoning,kevenkifkthek economicskisknotkcomplic
atedktheory.

Iklikektokfamiliarizekstudentskwithkthekimportantkdatakstructureskthatkempiricalkeconomistskuse,k focusing
kprimarilykonkcross-sectionalkandktimekserieskdataksets,kaskthesekarekwhatkIkcoverkinkak first-

semesterkcourse.k Itkiskprobablykakgoodkideaktokmentionkthekgrowingkimportancekofkdataksetsk thatkha
vekbothkakcross-sectionalkandktimekdimension.

Ikspendkalmostkankentireklecturektalkingkaboutkthekproblemskinherentkinkdrawingkcausalkinferencesk inkth
eksocialksciences.k Ikdokthiskmostlykthroughkthekagriculturalkyield,kreturnktokeducation,kandk crimekexamp
les.k Thesekexampleskalsokcontrastkexperimentalkandknonexperimentalk (observational)kdata.k Studen
tskstudyingkbusinesskandkfinancektendktokfindkthektermkstructurekofk interestkrateskexamplekmorekreleva
nt,kalthoughkthekissuektherekisktestingkthekimplicationkofkak simplektheory,kaskopposedktokinferringkcausa
lity.k Ikhavekfoundkthatkspendingktimektalkingkaboutk thesekexamples,kinkplacekofkakformalkreviewkofkpr
obabilitykandkstatistics,kiskmoreksuccessfulk(andk morekenjoyablekforkthekstudentskandkme).

,SOLUTIONSkTOkPROBLEMS

1.1 Itkdoesknotkmakeksensektokposekthekquestionkinktermskofkcausality.kEconomistskwouldkassumek thatkstu
dentskchoosekakmixkofkstudyingkandkworkingk(andkotherkactivities,ksuchkaskattendingkclass,k leisure,kandk
sleeping)kbasedkonkrationalkbehavior,ksuchkaskmaximizingkutilityksubjectktokthek constraintkthatktherekar
ekonlyk168khourskinkakweek.k Wekcankthenkusekstatisticalkmethodsktok measurekthekassociationkbetweenk
studyingkandkworking,kincludingkregressionkanalysiskthatkwek coverkstartingkinkChapterk2.k Butkwekwoul
dknotkbekclaimingkthatkonekvariablek“causes”kthekother.k Theykarekbothkchoicekvariableskofkthekstudent.

1.2 (i)kIdeally,kwekcouldkrandomlykassignkstudentsktokclasseskofkdifferentksizes.k Thatkis,keachk studentki
skassignedkakdifferentkclassksizekwithoutkregardktokanykstudentkcharacteristicsksuchkask abilitykandkfa
milykbackground.k ForkreasonskwekwillkseekinkChapterk2,kwekwouldklikeksubstantialk variationkinkclassks
izesk(subject,kofkcourse,ktokethicalkconsiderationskandkresourcekconstraints).

(ii) Aknegativekcorrelationkmeanskthatklargerkclassksizekiskassociatedkwithklowerkperformance.k W
ekmightkfindkaknegativekcorrelationkbecauseklargerkclassksizekactuallykhurtskperformance.k However,k
withkobservationalkdata,ktherekarekotherkreasonskwekmightkfindkaknegativekrelationship.k Forkexampl
e,kchildrenkfromkmorekaffluentkfamilieskmightkbekmoreklikelyktokattendkschoolskwithk smallerkclassksizes,k
andkaffluentkchildrenkgenerallykscorekbetterkonkstandardizedktests.k Anotherk possibilitykiskthat,kwithink
akschool,kakprincipalkmightkassignkthekbetterkstudentsktoksmallerkclasses.k Or,ksomekparentskmightkinsistkt
heirkchildrenkarekinktheksmallerkclasses,kandktheseksamekparentsk tendktokbekmorekinvolvedkinktheirkchild
ren’skeducation.

(iii) Givenkthekpotentialkforkconfoundingkfactorsk–ksomekofkwhichkareklistedkink(ii)k–
findingkak negativekcorrelationkwouldknotkbekstrongkevidencekthatksmallerkclassksizeskactuallykleadktok
k

betterk performance.kSomekwaykofkcontrollingkforkthekconfoundingkfactorskiskneeded,kandkthiskiskthek s
ubjectkofkmultiplekregressionkanalysis.

1.3 (i)kHerekiskonekwayktokposekthekquestion:kIfktwokfirms,ksaykAkandkB,karekidenticalkinkallk respectskex
ceptkthatkfirmkAksupplieskjobktrainingkonekhourkperkworkerkmorekthankfirmkB,kbykhowk muchkwouldkfirm
kA’skoutputkdifferkfrom kfirmkB’s?




(ii) Firmskareklikelyktokchoosekjobktrainingkdependingkonkthekcharacteristicskofkworkers.kSomek obs
ervedkcharacteristicskarekyearskofkschooling,kyearskinkthekworkforce,kandkexperiencekinkak particularkj
ob.kFirmskmightkevenkdiscriminatekbasedkonkage,kgender,korkrace.kPerhapskfirmskk choosektokofferktraini
ngktokmorekorklesskablekworkers,kwherek“ability”kmightkbekdifficultktok quantifykbutkwherekakmanagerkh
asksomekideakaboutkthekrelativekabilitieskofkdifferentkemployees.k Moreover,kdifferentkkindskofkworke
rskmightkbekattractedktokfirmskthatkofferkmorekjobktrainingkonk average,kandkthiskmightknotkbekevidentkt
okemployers.

(iii) Thekamountkofkcapitalkandktechnologykavailablektokworkerskwouldkalsokaffectkoutput.k So,k tw
okfirmskwithkexactlyktheksamekkindskofkemployeeskwouldkgenerallykhavekdifferentkoutputskifk theykusekd
ifferentkamountskofkcapitalkorktechnology.k Thekqualitykofkmanagerskwouldkalsokhavekank effect.

, (iv) No,kunlesskthekamountkofktrainingkiskrandomlykassigned.k Thekmanykfactorsklistedkinkparts
(ii) andk(iii)kcankcontributektokfindingkakpositivekcorrelationkbetweenkoutputkandktrainingkevenkifk jobkt
rainingkdoesknotkimprovekworkerkproductivity.


SOLUTIONSkTOkCOMPUTERkEXERCISES

C1.1k(i)kThekaveragekofkeduckiskaboutk12.6kyears.k Therekarektwokpeoplekreportingkzerokyearskofk ed
ucation,kandk19kpeoplekreportingk18kyearskofkeducation.

(ii) Thekaveragekofkwagekiskaboutk$5.90,kwhichkseemsklowkinkthekyeark2008.

(iii) UsingkTablekB-
60kinkthek2004kEconomickReportkofkthekPresident,kthekCPIkwask56.9kink 1976kandk184.0kink2003.

(iv) Tokconvertk1976kdollarskintok2003kdollars,kwekusekthekratiokofkthekCPIs,kwhichkisk 184k
/k56.9k 3.23k.k Therefore,kthekaveragekhourlykwagekink2003kdollarskiskroughlyk 3.23($5.9
0)k $19.06k,kwhichkiskakreasonablekfigure.

(v) Theksamplekcontainsk252kwomenk(theknumberkofkobservationskwithkfemalek=k1)kandk274k me
n.


C1.2k(i)kTherekarek1,388kobservationskinktheksample.k Tabulatingkthekvariablekcigskshowskthatk212k wo
menkhavekcigsk>k0.

(ii) Thekaveragekofkcigskiskaboutk2.09,kbutkthiskincludeskthek1,176kwomenkwhokdidknotk smoke.k
Reportingkjustkthekaveragekmaskskthekfactkthatkalmostk85kpercentkofkthekwomenkdidknotk smoke.k Itkma
keskmoreksensektoksaykthatkthek“typical”kwomankdoesknotksmokekduringkpregnancy;k indeed,kthekmedi
anknumberkofkcigarettesksmokedkiskzero.

(iii) Thekaveragekofkcigskoverkthekwomenkwithkcigsk>k0kiskaboutk13.7.kOfkcoursekthiskisk muc
hkhigherkthankthekaveragekoverkthekentireksamplekbecausekwekarekexcludingk1,176kzeros.

(iv) Thekaveragekofkfatheduckiskaboutk13.2.kTherekarek196kobservationskwithkakmissingk val
uekforkfatheduc,kandkthosekobservationskareknecessarilykexcludedkinkcomputingkthekaverage.

(v) Thekaveragekandkstandardkdeviationkofkfaminckarekaboutk29.027kandk18.739,k resp
ectively,kbutkfaminckiskmeasuredkinkthousandskofkdollars.k So,kinkdollars,kthekaveragekandk standar
dkdeviationkarek$29,027kandk$18,739.

C1.3k(i)kTheklargestkisk100,ktheksmallestkisk0.

(ii) 38koutkofk1,823,korkaboutk2.1kpercentkofktheksample.

, (iii) 17

(iv) Thekaveragekofkmath4kiskaboutk71.9kandkthekaveragekofkread4kiskaboutk60.1.k So,katkleastk i
nk2001,kthekreadingktestkwaskharderktokpass.

(v) Theksamplekcorrelationkbetweenkmath4kandkread4kiskaboutk.843,kwhichkiskakverykhighk deg
reekofk(linear)kassociation.k Notksurprisingly,kschoolskthatkhavekhighkpasskrateskonkonektestk havekaks
trongktendencyktokhavekhighkpasskrateskonkthekotherktest.

(vi) Thekaveragekofkexpppkiskaboutk$5,194.87.k Thekstandardkdeviationkisk$1,091.89,kwhichk s
howskratherkwidekvariationkinkspendingkperkpupil.k [Thekminimumkisk$1,206.88kandkthek maximumkisk
$11,957.64.]

C1.4k(i)k185/445k .416kiskthekfractionkofkmenkreceivingkjobktraining,korkaboutk41.6%.

(ii) Forkmenkreceivingkjobktraining,kthekaveragekofkre78kiskaboutk6.35,kork$6,350.k Forkmenknotk re
ceivingkjobktraining,kthekaveragekofkre78kiskaboutk4.55,kork$4,550.k Thekdifferencekisk$1,800,kwhichkisk
veryklarge.k Onkaverage,kthekmenkreceivingkthekjobktrainingkhadkearningskaboutk40%k higherkthankthos
eknotkreceivingktraining.

(iii) Aboutk24.3%kofkthekmenkwhokreceivedktrainingkwerekunemployedkink1978;kthekfigurekisk 35
.4%kforkmenknotkreceivingktraining.k This,ktoo,kiskakbigkdifference.

(iv) Thekdifferenceskinkearningskandkunemploymentkratesksuggestkthektrainingkprogramkhadk str
ong,kpositivekeffects.k Ourkconclusionskaboutkeconomicksignificancekwouldkbekstrongerkifkwek couldka
lsokestablishkstatisticalksignificancek(whichkiskdonekinkComputerkExercisekC9.10kink Chapterk9).

, CHAPTER 2 k



TEACHINGkNOTES
ThiskiskthekchapterkwherekIkexpectkstudentsktokfollowkmost,kifknotkall,kofkthekalgebraickderivations.k Inkcla
sskIklikektokderivekatkleastkthekunbiasednesskofkthekOLSkslopekcoefficient,kandkusuallykIkk derivekthekvaria
nce.k Atkakminimum,kIktalkkaboutkthekfactorskaffectingkthekvariance.k Toksimplifyk theknotation,kafterkIkem
phasizekthekassumptionskinkthekpopulationkmodel,kandkassumekrandomk sampling,kIkjustkconditionkonkthek
valueskofkthekexplanatorykvariableskinktheksample.k Technically,k thiskiskjustifiedkbykrandomksamplingkb
ecause,kforkexample,kE(ui|x1,x2,…,xn)k=kE(ui|xi)kbyk independentksampling.k Ikfindkthatkstudentskareka
blektokfocuskonkthekkeykassumptionkSLR.4kandk subsequentlyktakekmykwordkaboutkhowkconditioningkonkt
hekindependentkvariableskinktheksamplekisk harmless.k (Ifkyoukprefer,kthekappendixktokChapterk3kdoeskt
hekconditioningkargumentkcarefully.)k Becausekstatisticalkinferencekisknokmorekdifficultkinkmultiplekregre
ssionkthankinksimplekregression,k IkpostponekinferencekuntilkChapterk4.k (Thiskreduceskredundancykandka
llowskyouktokfocuskonkthek interpretivekdifferenceskbetweenksimplekandkmultiplekregression.)
Youkmightknoticekhow,kcomparedkwithkmostkotherktexts,kIkusekrelativelykfewkassumptionsktok derivekthek
unbiasednesskofkthekOLSkslopekestimator,kfollowedkbykthekformulakforkitskvariance.k ThiskiskbecausekIkd
oknotkintroducekredundantkorkunnecessarykassumptions.k Forkexample,koncek SLR.4kiskassumed,knothingk
furtherkaboutkthekrelationshipkbetweenkukandkxkiskneededktokobtainkthek unbiasednesskofkOLSkunderkra
ndomksampling.

,SOLUTIONSkTOkPROBLEMS
2.1k Inkthekequationkyk=k 0k +k 1xk+ku,kaddkandksubtractk 0k fromkthekrightkhandksidektokgetkyk=k( 0k +
0)k+k 1xk+k(uk 0).k Callktheknewkerrorkek=kuk 0,ksokthatkE(e)k=k0.k Theknewkinterceptkisk 0k
+
0,kbutkthekslopekiskstillk 1.

n
2.2k (i)kLetkyik =kGPAi,kxik =kACTi,kandknk=k8.k Thenkk xk=k25.875,k yk =k3.2125,k (xik –k xk)(yik –k yk)k=
i 1
n
5.8125,kandk (xik – ˆk
2k
k xk) =k56.875.k Fromkequationk(2.9),kwekobtainkthekslopekas =
1
i 1
ˆ
5.8125/56.875k .1022,kroundedktokfourkplaceskafterkthekdecimal.k Fromk(2.1 0 kk = k yk –
7),
ˆ1kk xkk 3.2125k–k(.1022)25.875k .5681.k Sokwekcankwrite

GPAk =k .5681k+k.1022kACT
nk=k8.
ThekinterceptkdoesknotkhavekakusefulkinterpretationkbecausekACTkisknotkclosektokzerokforkthek populatio
nkofkinterest.kkIfkACTkisk5kpointskhigher,k GPAkincreaseskbyk.1022(5)k=k.511.

(ii)kThekfittedkvalueskandkresidualsk—kroundedktokfourkdecimalkplacesk—
arekgivenkalongkwithk thekobservationknumberkikandkGPAkinkthekfollowingktable:
k




i GPA G û
1 2.8 PA
2.7143 .0857
2 3.4 3.0209 .3791
3 3.0 3.2253 –.2253
4 3.5 3.3275 .1725
5 3.6 3.5319 .0681
6 3.0 3.1231 –.1231
7 2.7 3.1231 –.4231
8 3.7 3.6341 .0659

Youkcankverifykthatkthekresiduals,kaskreportedkinkthektable,ksumktok .0002,kwhichkiskprettykclosektok zer
okgivenkthekinherentkroundingkerror.

(iii)kWhenkACTk=k20,k GPAk=k.5681k+k.1022(20)k 2.61.

, n
(iv)kTheksumkofksquaredkresiduals, ûikk2 ,kiskaboutk.4347k(roundedktokfourkdecimalkplaces),
i
n 1

andkthektotalksumkofksquares,k (yik –k yk)2,kiskaboutk1.0288.k SokthekR-squaredkfromkthe
i 1
regressionkis
R2kk =k 1k–kSSR/SSTk 1k–k(.4347/1.0288)k .577.

Therefore,kaboutk57.7%kofkthekvariationkinkGPAkiskexplainedkbykACTkinkthisksmallksamplekofk students.
2.3 (i)kIncome,kage,kandkfamilykbackgroundk(suchkasknumberkofksiblings)karekjustkakfewk possibilities.k Itks
eemskthatkeachkofkthesekcouldkbekcorrelatedkwithkyearskofkeducation.k (Incomekk andkeducationkarekpro
bablykpositivelykcorrelated;kagekandkeducationkmaykbeknegativelykcorrelatedk becausekwomenkinkmo
rekrecentkcohortskhave,konkaverage,kmorekeducation;kandknumberkofksiblingsk andkeducationkarekproba
blyknegativelykcorrelated.)
(ii)kNotkifkthekfactorskweklistedkinkpartk(i)karekcorrelatedkwithkeduc.k Becausekwekwouldklikektok holdkt
hesekfactorskfixed,ktheykarekpartkofkthekerrorkterm.k Butkifkukiskcorrelatedkwithkeduckthenk E(u|educ)k
0,kandksokSLR.4kfails.
2.4 (i)kWekwouldkwantktokrandomlykassignktheknumberkofkhourskinkthekpreparationkcourseksokthatk hour
skiskindependentkofkotherkfactorskthatkaffectkperformancekonkthekSAT.kThen,kwekwouldk collectkinforma
tionkonkSATkscorekforkeachkstudentkinkthekexperiment,kyieldingkakdatakset
{(satik,khoursik)k:kik 1,...,kn},kwhereknkisktheknumberkofkstudentskwekcankaffordktokhavekinkthekstudy.
Fromkequationk(2.7),kwekshouldktryktokgetkaskmuchkvariationkink hoursi askiskfeasible.

(ii) Herekarekthreekfactors:k innatekability,kfamilykincome,kandkgeneralkhealthkonkthekdaykofkthek ex
am.k Ifkwekthinkkstudentskwithkhigherknativekintelligencekthinkktheykdoknotkneedktokpreparekfork thekSAT,kt
henkabilitykandkhourskwillkbeknegativelykcorrelated.k Familykincomekwouldkprobablykbek positivelykcorr
elatedkwithkhours,kbecausekhigherkincomekfamilieskcankmorekeasilykaffordk preparationkcourses.k Rulin
gkoutkchronickhealthkproblems,khealthkonkthekdaykofkthekexamkshouldkk bekroughlykuncorrelatedkwithkhou
rskspentkinkakpreparationkcourse.

(iii) Ifkpreparationkcourseskarekeffective,k 1kk shouldkbekpositive:kotherkfactorskequal,kank i
ncreasekinkhourskshouldkincreaseksat.

(iv) Thekintercept,k 0k ,khaskakusefulkinterpretationkinkthiskexample:kbecausekE(u)k=k0,k 0
iskthe
averagekSATkscorekforkstudentskinkthekpopulationkwithkhoursk=k0.

2.5 (i)kWhenkwekconditionkonkinckinkcomputingkankexpectation, inc becomeskakconstant.k So
E(u|inc)k=kE(kkkinck e|inc)k inc  E(e|inc)k= inc  0kbecausekE(e|inc)k=kE(e)k=k0.
=

(ii) Again,kwhenkwekconditionkonkinckinkcomputingkak variance, inc becomeskakconstant.k So
2 2k 2k
Var(u|inc)k=kVar(kkkinck e|inc)k=k(kkkinck) Var(e|inc)k=k inckbecausekVar(e|inc)k=k .
e e

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestBanksStuvia Chamberlain College Of Nursng
Follow You need to be logged in order to follow users or courses
Sold
2679
Member since
2 year
Number of followers
1194
Documents
1925
Last sold
19 hours ago
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

288 reviews

5
158
4
43
3
30
2
20
1
37

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions