100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Zusammenfassung Algorithmen und Berechnungskomplexität1-Übungszettel2-Algo1

Rating
-
Sold
-
Pages
12
Uploaded on
11-12-2024
Written in
2024/2025

Dieses Dokument enthält die Lösungen zum 2. Übungsblatt des Moduls Algorithmen und Berechnungskomplexität 1 sowie zusätzliche Mitschriften zur besseren Verständlichkeit.

Institution
Module









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
December 11, 2024
File latest updated on
December 11, 2024
Number of pages
12
Written in
2024/2025
Type
Summary

Subjects

Content preview

Algorithmen und Berechnungshomplexität I


Übungsblatt 2


Aufgabe 27 ,




Wir möchten das:
zeigen ,


log (n ! ) O(nlog(n)) =




Demnach Ja 6 ERt und InoEIN , ,
sodass Un >no
gilt :




a
nlog(n) log (n ! ) <b
nlog(n)
.
.




Obere Schranke
Die Fakultät von n ist definiert als :




n! =
n
·


(n 1) (n-2) .....
-
·




Wendet den
diese Funktion an erhält
man
Logarithmus auf man :
,




log (n !) =

log (n (n 1) (n -2)
· - ·

..... 1)
Dies kann umformen zu loglab) log(a) log(b)
man = +




log(n ! ) log(n) log(n 1) log(n 2) og(t) + + +... +
-
-
=




=
0

, Das kann man auch so darstellen :




log(n ! )
= N logh s

Schaut man sich jeden einzelnen Term
der Summe
log(k) an , so
gilt :




log(k) log (n) ,
FheE1 ,
2
, , ..., n3
3

Das bedeutet , das jeder Loganth mus
log(k) für k In maximal log(n) beträgt .




Und somit gilt :


N ~



log(h) log(n) =

1
n.
log(n)
h =
1 h =
1


Da logans ein honstanter Wert ist ,

kann den Term
man
log (n) aus

der Summe herausziehen ,
£2.69
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
elijah1888

Get to know the seller

Seller avatar
elijah1888 Rheinische Friedrich-Wilhelms-Universität Bonn
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions