Transcendental Functions
8th Edition by Ron Larson
S
Complete Chapter Solutions Manual
R
are included (Ch 1 to 10)
VE
IE
** Immediate Download
H
** Swift Response
AC
** All Chapters included
M
EA
R
D
, C H A P T E R 1
Preparation for Calculus
Section 1.1 Graphs and Models................................................................................. 2
Section 1.2 Linear Models and Rates of Change ................................................... 11
Section 1.3 Functions and Their Graphs ................................................................. 22
S
Section 1.4 Review of Trigonometric Functions .................................................... 36
R
Section 1.5 Inverse Functions.................................................................................. 45
VE
Section 1.6 Exponential and Logarithmic Functions ............................................. 62
Review Exercises .......................................................................................................... 72
IE
Problem Solving ........................................................................................................... 87
H
AC
M
EA
R
D
,C H A P T E R 1
Preparation for Calculus
Section 1.1 Graphs and Models
1. To find the x-intercepts of the graph of an equation, 8. y = 5 − 2 x
let y be zero and solve the equation for x. To find the 5
y-intercepts of the graph of an equation, let x be zero x −1 0 1 2 2
3 4
and solve the equation for y. y 7 5 3 1 0 −1 −3
2. Symmetry helps in sketching a graph because you need
only half as many points to plot. Answers will vary.
S
3. y = − 32 x + 3
x-intercept: ( 2, 0)
R
y-intercept: (0, 3)
VE
Matches graph (b).
4. y = 9 − x2 9. y = 4 − x 2
x-intercepts: ( −3, 0), (3, 0) x −3 −2 0 2 3
y-intercept: (0, 3)
Matches graph (d).
IE y −5 0 4 0 −5
H
5. y = 3 − x 2
( )( )
AC
x-intercepts: 3, 0 , − 3, 0
y-intercept: (0, 3)
Matches graph (a).
M
6. y = x3 − x
10. y = ( x − 3)
2
x-intercepts: (0, 0), ( −1, 0), (1, 0)
EA
y-intercept: (0, 0) x 0 1 2 3 4 5 6
Matches graph (c). y 9 4 1 0 1 4 9
R
7. y = 1x +2
2
x −4 −2 0 2 4
D
y 0 1 2 3 4
2
, Section 1.1 Graphs and Models 3
11. y = x + 1 3
15. y =
x
x −4 −3 −2 −1 0 1 2
x −3 −2 −1 0 1 2 3
y 3 2 1 0 1 2 3
y −1 − 32 −3 Undef. 3 3
2
1
S
12. y = x − 1
R
x −3 −2 −1 0 1 2 3 1
16. y =
y 2 1 0 −1 0 1 2 x + 2
VE
x −6 −4 −3 −2 −1 0 2
y − 14 − 12 −1 Undef. 1 1
2
1
4
IE
H
13. y = x −6
AC
x 0 1 4 9 16
y −6 −5 −4 −3 −2 17. y = 5− x
M
EA
(a) (2, y) = ( 2, 1.73) (y = 5−2 = 3 ≈ 1.73 )
R
14. y = x + 2
(b) ( x, 3) = ( −4, 3) (3 = 5 − ( −4) )
D
x −2 −1 0 2 7 14 18. y = x5 − 5 x
y 0 1 2 2 3 4
(a) (−0.5, y) = ( −0.5, 2.47)
(b) ( x, − 4) = ( −1.65, − 4) and ( x, − 4) = (1, − 4)