100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Financial Econometrics (6414M0007Y)

Rating
-
Sold
4
Pages
24
Uploaded on
27-09-2024
Written in
2023/2024

Comprehensive summary of the Financial Econometrics course.

Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
September 27, 2024
Number of pages
24
Written in
2023/2024
Type
Summary

Subjects

Content preview

Univariate linear time series
Time serie is a sequential set of observations on variable x, where t represents time Exa =..., Xe-2 ,
Xe ,
Xe ,
Xe +, Xe +, ...




Financial returns
-
One-period (simple) return PA Pe DA Pt-1 Pt Pt-1 DE
note
PA
-

+
-
- - 1




regular (if dividends are included
: RE =
Pt-1 Rt =
Pt -1 =
Pe -
1
+
Pt -1
) RE
returns
log-return =log) Rt) leg (p) :

log -log Pr , +
= =

pr -pe
= Pr =

spe Pt
price
-
Multi-period return (sum of one-period returns), use log-returns k - 1
dividens
De


re[k] =
pt
-



pe m
=
(pt -


pt
1) -



(pt ps k)
- =
ra +
(pt 1
-



pe
-z) +
(pec -



pe
-b) =
ra + re + ...
grej



#




Using these concepts of time series and financial returns, we get financial time series
example
Prices Log of prices Log of return




properties financial time series
-
stationarity
strict stationarity: distribution of (xh + 1,
, . . .,
Xer +
1) does not depend on t for any integers Et , ....
Ab and t


distribution does not change when we shift, hence change t
7




weak stationarity
8
constant mean, independent of time: E(xt) M =




O
constant variance, independent of time: Var(xe) G =




El(x m)(x )]
constant autocovariance, independent of time: (x
e)
O

for( j
: - -
=
,




-
autocorrelation function ACF: pl =
core (xt ,
xx e) =
Var(xe) =


yo
D E(ae) Var(ae) Cov(at are)
example stationary process, White Noise: = 0
,
=
8, ,
=
o




models
d
Linear process: m j +jatj m Xt =
+ = + Nodt + 4 , at - ....




Pit
stationary with mean M , variance z4, and ACF Al 204j
7 =




Wold's decomposition theory states that any stationary proces [xe] can be written as sum of linear and
deterministic processes Ewa]
We could also at a lag operator B, defined by Bxt =
XA -
, hence Baxt =
Xe b -




I

, N




Then we could write the linear process as xt =

m
+ x(B) at =

m
+ 4oat + 4 , at - ...
+ That - b



- +(B) =
j4 B ,



8
Autoregressive process
· AR( ) ,
:
xt =
00 + Ext -1 + at

①o Ga
7
stationary if 10 14 , then E(x) A Var(xz) -0 ,
yo
= =

m
=
. =
1 -

, 1




proof 00 Xt = + 6 , Xt -
1 + at




(1 -
d, B) xt =
00 + at




x =
,)1 qB)" (d at)
-
+ =
j(q B)" (4,
+ a) =
Tod, (0 +
atj)
-
d(B) =
1 - d B ,
=
0




&
AR( ) 4
5
ACF ,
stationary 1
is linear process with exponentially decaying weights =
6 ,
, we find =

pe
=
0


AR(p)
·
:
xt = do + d , xt -
1 + +
6pxt -


p
+ at

example
...




Et
ye
0
3yt +
=
0
1yt
. - + .
-
2


>

stationary if all zj lie outside unit circle: ye
-
0 .


3yt -
1
-
0 .



1yt 2
=
Et




xt- t
proof X- ·
,

(1 -
0 .
3) -


o .,
(2) ye =
Es




↓ (2) 122
for =
1 -
0 32.
-
0 .
= 0 2 = -
522 = 2



((z) =
1 -
0 , 2 ....
-

pzP = 0 #
as both lie outside unit circle, stationary

&
ACF can not be determined, but we can use partial autocorrelation function (PACF), for
AR(p), the PACF has cut-off point at l p =




Q

Moving Average model
·
MA(1) :
x =
20 + at -
G at -1
,




7

stationary for all parameter values with M ja) +i)
jo er =
=
1 +
,




-- for hence ACF is cut-off at l peo
>
,
p 1
. =
,




>
invertible if 18 14 .
, a model is invertible if it can be expressed as AR(n)

proof XA =
at + fat -
1




at =
xx
-
G , at -
1
=
Xt - 0(xt - - at z) =... =
x -
Ext + + 0xx 2 - 83x 3 + ...




D




( f)" AR(g) 101
= -




i =
-
+ a =

only works as
>
PACF decays exponentially
MA(q)
·
at-Gat- . . .
xt co
gatg
-
: = +




>
ACF has cut-off point at l g =




invertible if all roots zj lie outside unit circle: Fiat -
at
gatq
7
Xt e0
-
=
+ -
-...




xe =
e +
1) -

f B ,
-




...
fqB) at ,




Xe = e + (B) at

6(z) =
1
-
12 ...
-



gz = o



&

PACF decays exponentially

, &
Mixed autoregressive-moving average model
ARMA(p g)
·
d dx ApX - G,
,
EqAq :
xt = + + + ... +
-p
+ at ....


①o O(z)
b(z) y(B)at (2)
stationary if all roots of
7
lie outside unit circle, implying xx =
m
+
,
m
=



0)) ,
=
q(z)
((z)
3
invertible if all roots of f(z) lie outside unit circle, yielding # (B) x1 = co + at
,
20 =
0(1) ,
(2) =
f(z)


7
ACF decays exponentially
>
PACF decays exponentially
&
ARMA(p 1)
To avoid identification problems, reduce model to -1 ,
g
-




AR(p) MA(g) ARMA(p ,
g)
AlF deceases geometrically
,

pl I 1

for large l
11

decreases geometrically 0 for 2q



PACF ,
60 I I deceases geometrically
for large l
0 for expo decreases geometrically


8

Integrated processes: many time series are non-stationary, but may have stationary first differences

X-X
example is non-stationary, but is stationary, now 1( ) Xe -




is integrated of order d ( = ) if
Xt =
Xt -
1 + Et ,




hence
7 Xt
stationary vs integrated processes

now we applicate this to the ARMA(p g) model: ,
:
Xt =
00 + b , Xt -
1 + ...
+
6pXt p
+ at -

, at - - ...
-



Agat-q :
ApXt 0 Eat
xx d , Xt = + at ....
OgAq
-



p
-
-
....




((B)xt = 6 f(B) at
when this is non-stationary we could use differences
+




( (B)axx =
00 + f(B) at
(with roots ↓ (B) and &(B) outside unit circle)
>
autoregressive-integrated-moving average, ARIMA(p d g) , ,




example random walk (with drift if MF0 ) : Xt =

M
+ Xt -
1 + at



E(x0) Var(x)
xo
Mt aj this is non-stationary as Mt Var(xe) ot
= + = +
m
+ = +
,




but we can integrate to make stationary: AXt =

M
+ at




Suppose we have a time series, how do we then select the appropriate ARIMA model?
>
Box-Jenkins procedure: consists of servers steps
1



Identification /model selection: make initial guess of p, d and q, based on graphs and sample ACF and PACF

L
remember
sample ACF je jo
je i (x x)(xx z)
(xe )
Leung-Box Q-statistic
test
Hope
=


Haiplo Q(m) T(T 2) x (m)
=
+,
-




-
*
e -




3 =
0
,
=
+
<




~

sample PACF Ee] : obtain with OLS on Xt =
00 ,
2 +
d1 ,
2xt - ...
+ PhlXt 1 + elt




:
...
& l

or 2 .
l L




: i
= ...
I




Fre

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
maaikekoens Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
4 year
Number of followers
0
Documents
9
Last sold
4 weeks ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions