100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting + Uitwerkingen zelfstudieopgaven BO3: Kwantitatief Onderzoek

Rating
-
Sold
2
Pages
20
Uploaded on
25-08-2024
Written in
2023/2024

Dit is een samenvatting van de stof van BO3: Kwantitatief Onderzoek aan de Tilburg Universiteit. Hier staan tevens de uitwerkingen van de zelfstudieopgaven in + handige formules en stappenplannen voor bijvoorbeeld het berekenen van de power, uitleg over SPSS tabellen en met bijbehorende plaatjes, tekeningen en grafieken. Ik heb door middel van deze uitwerkingen een 9 voor het tentamen gehaald.

Show more Read less
Institution
Module













Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
No
Which chapters are summarized?
Aantekeningen en uitwerkingen zelfstudieopgaven
Uploaded on
August 25, 2024
File latest updated on
August 25, 2024
Number of pages
20
Written in
2023/2024
Type
Summary

Subjects

Content preview

, Lecture 1
-




bekende scores :
3 . 4 en 6 n =
3

9 Variantie berekenen

X =
4 +6
3 =
I




45
-


=

S
(3 -

45)2 = 1 ,
7778
2
(4 -

45) =
0 , 1771 SS - > Sum of
squares
16-45)) =
-2 , 3333



Standaarddeviatie berekenen
-
- 3333 ,
=
1 , 5275



. als
b een score van 5 wordt toegevoegd neemt de standaarddeviatie af

(5 -

45)2 =
0 , 4445

want score ligt dicht bij het
gemiddelde


6 1 , 7037

S =37
-
15
=
1 3053
,




C als
.
een score van & wordt toegevoegd neemt de standaarddeviatie toe

(0 -

45)2 =
13 , 4447 ↳ want score ligt niet dicht
bij het
gemiddelde


-
+

= 6 , 0371 -
152

5 = %
0 0371 =
2
,
4577


Lecture
-
2


Kansberekenen score groter dan 3 75,
(M =
0 ,
0 =
10)




M
.score
2 0 , 375 Kans 0 35385
375
-0

XXM
> - = 0 35
4
-
= = =
, ,




p(X >3 ,
75) =
0, 354




0
Kansberekenen Score
groter dan 3 75, (p-0 .




X ing totale oppervla
een




3 75 0 , 0000850 , 0
350
Kans
2-score--XM
= = =
,




Kans is veel kleiner dan bij verdeling hier voor door een kleinere standaarddeviatie

p(x > 3 ,
75) =
0 ,
0001

,Complementregel




-Me
· -
0, 5




opdracht ( =
1006 =
15x =
95
0,
6293




~Ik / 100


de Kans dat p(x 95)
2-score =5 100
= =
-
0. 3333 - >
kans = 0, 6293
15
p(x +
g5) = 0
, 6293
↳ 62 ,
93 % heeft hoger
Opdracht M
= 100 6 = 15 10 %
hoogste
↳z = 1 20
,




-I -
X =
z .

0 + M

-15"
0 , 10




700


X is
zijn minimaal
=
100 + 1 20-15 IQ
119
=
,
2
,




Opdracht M =
100 6 =
15 Steekproef met n =
30




Steekproevenverdeling van het
gemiddende= beschrijft hoe de
gemiddenden van verschillende Steekproev

van dezei de populatie zijn verdeeld
* Centrale
limietstelling = heeft de vorm van een normaal
verdeling Wanneer de steekproefgrootte
n230 is
.

-


gemiddelde is
geijk aan populatiegemiddelde M
Standaarddeviatie is de standaardcout van het
-




gemiddelde
6x =


In
-

relatieve afstand van het gemiddelde van een steekproef tot het gemiddelde van de populatie
↳ Z
I
=

,Opdracht M = 1000 = 15 x =
105n = 36





05 =
6 >
- = 2 5
,




N 0, 0220



E00
2 = = 20 020
,




100 T = 105


Lecture
-
3 D(z = 2)/p(x - 105)

M
=
1000 = 15 * = 106

0 Kans 3446
10100
z =
0,
4 -
= =
,


34 46 % ,



X =
106 S =
73 7 n ,
= 25




0 = 2 -
kans =
0 , 0210




standaardcout van het steekproef gemiddelde is afhankelijk van

* standaarddeviatie in de populatie o

↳ meer
spreiding in
populatie
- >
meer
spreiding in
steekproevenverdeling van het gemiddelde .




*
grootte van de steekproef n

4) hoe groter steekproef hoe minder in steekproeven het
--
spreiding verdeling van
gemiddelde .




Ho :
M =
100


Hy :
M = 100

6 =
15 N = 76X =
104 94M ,
= 100


Ox
==
37




M
2 = 4 94-100,
= 1 , 317
3 75
,




ga uit van a = 0 , 05 dus Kritieke waarde = 1 , 96


Ho verwerpen met a =
0 , 20 ?

Kritieke waarde = 1, 202Zu ja Ho verwerpen wann waarde Valt binnen Zou
↳ kans op het maken van een
type I Cout wordt
groter


strengste significantieniveau tweede voorbeeld :




Ho :
M = 100 * =
106 N =
25 N =
147
= item 310 %
H: M 100 6 3 1,6
=

49 S
:
=
15 ,
=




05 %
=
item 311 : = 3
,
05 S = 1
, 4

ST
6 134
=
= 0
,



2 =
M = 0

3 Mo
2 =
-4 = -3
,
705
a = 0 ,
05 is strengst -I want Zu =
1
, 96 0
, 13474 ↓
significant


Tennisicant
wel

,Stappenplan hypothesetoets voor het
gemiddelde
.stel
1 het
hypothesetoetsen voor
gemiddelde op

* Ho :
M =
100 - >
nulhypothese
= 100
* He M alternatieve
hypothese
: >
-




. bereken het
2
steekproefgemiddelde
* * is 104 , 94
3
. bereken gestandaardiseerd Verschil tussen Steekproefgemiddelde en veronderstelde Populatiegemiddelde

toetsingsgrootheid


bekno
Z




standaardt De



(gebruik 2-verdeling)
4
. bepaal significantie
*
toetsingsgrootheid vergelijken met Kritieke grenswaarden (2)
*
grenswaarde voor 5 % meest extreme scores onder 'two tails combined' (taba B.
2) - 1,
96 en -1 ,
96




-
-waarde
I
jet in
ligt het
verwerpingsgebied de
↳>
niet
significant verschil (Ho niet verwerpen)
Kritieke Waarden a =
0 05
-
,




,,,sIIII "I1111
.


-
1
, 96
1 , 32 1,
96
2

.
5 trek inhoudelijke conclusie

* onvoldoende bewijs om Ho te verwerpen


Lecture 4
-



. toets
2 voor het
gemiddelde Ho M (tegen Hi M * C
:
toepassen als : = :




*
Populatiesigma bekend is (0 standaarddeviatie
de

Steekproefgrootte N-120 /standaarddeviatie uit steekproef gebruiken
* voor sigmal
*
Steekproevenverdeling de normale
verdeling kent

bepalen significantie a =
0, 05




* =
0, 025125
No
↓ "
-Illi - 1
, 96 1,
96
---
Ho verwerpen Ho aanhouden H verwerpen


tweezijdig versus
eenzijdig toetsen


tweezijdig toetsen eenzijdig toetsen

*
geen specifieke verwachtingen over *
wel specifieke verwachtingen over
richting (toe-

richting (zowe positieve als negatieve name of afname van populatiegemiddelde) .




verschillen) .
*
Linkseenzijdig Ho : :
M = (
tegen Hy :
MCC
*
Ho M = tegen H: M
* C rechtseenzijdig Ho M (tegen H: / > C
: : : =




Steekproefgemiddeldes die * Kritieke waarden bevinden zich in 1 staart van
*
Lager or
hoger liggen dan MHo Spreken Ho normaal
verdeling (links of rechts).

tegen .




linkseenzijdig

-
is do irehen
- >
0 05
, T
0 , 025




in

, Rechtseenzijdige toets :
bepalen significantie (a = 0, 05)




~ ---
1 , 65 = Zu


Ho aanhouden H Verwerpen
↳ tail'
proportion in one -
>1 .
65




opdrachten lecture 4 .




n = 25X = 1066 = 15


Ho tegen Hi M
:
M
=
100 : > 100


Standaardfout-> Ox 0




M
=




2-score- > 2 =




bepaal significantie a 0 05 Zu 1 645 =
,
-1 =
,




valt in het
verwerpingsgebied dus Significant verschil - >
Ho verwerpen

strengste significantieniveau a
bij Ho :
M = 100 tegen H :M < 100

↳ kunnen Ho Niet verwerpen want sprake van linkseenzijdige hypothese
-
>
uitkomst rechts
is
namelijk

je moet van tevoren bepalen of
je eenzijdig of
tweezijdig toetst

↳ anders Kans
grotere op Type I Cout .




de t-toets toepassen als :




*
normaal verdeelde populatie waarvan Standaarddeviatie onbekend is (0)
*
Steekproefgrootte NE120 is .




bij N- 120 beter om ook t-toets
*
te
gebruiken


opdracht :




gegevens - N =
19 X =
7 05 , M
= 5 7
.
S =
4 47 a
,
=
0 , 05


0 =
onbekend en N >120 dus t-toets
*
Ho :
M = 5 7 ,




Hi :
M + 5 7 .




X
=
* =
7 ,
05 en Sy =
= 1
,
0254
- S


*
toetsingsgrootheid berekenen t 90153 g e
=
t =
1
,




bereken de do
*
significantie bepalen -
(degrees of freedom) > = N 1
- -




4 10
19 1
- =





bij a = 0
,
05 - 2 ,
101 rechts en-2 , 101 links

* Conclusie (1 goz) .
valt niet in het verwerpingsgebied

Ho niet verwerpen

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gerjanneva24 Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
67
Member since
2 year
Number of followers
5
Documents
11
Last sold
2 weeks ago
Gerjanne's Summaries

Op deze pagina vind je alle benodigde samenvattingen die ik heb gemaakt voor de Premaster Bestuurskunde aan de Tilburg Universiteit (2023/2024). Daarnaast staan er ook nieuwe samenvattingen op voor de Master Bestuurskunde (specialisatie Besturen van Veiligheid) aan de Radboud Universiteit (2025/2026).

3.9

8 reviews

5
3
4
3
3
1
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions