100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary - Unit 5 - Formulae, Equations and Amounts of Substance (9CH0)

Rating
-
Sold
-
Pages
2
Uploaded on
05-08-2024
Written in
2023/2024

A summary of topic 5, organised so the notes are easy to understand. The notes are on slides, so they can be printed out and used as revision cards or posters, for revision on the go. The notes cross-reference the specification so it is easy to see where each bit of information has come from. They include detailed hand-drawn diagrams and extra research to help understanding.

Show more Read less








Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
August 5, 2024
Number of pages
2
Written in
2023/2024
Type
Summary

Content preview

Naming Ionic eq’s:
- IDE = 2 elements 1. Balance
- ATE = 2 elements + oxygen 2. Everything aq split into ions
Common transition metal valencies: 3. Remove spectator ions
Percentage calculations:
% yield = actual yield _ x100
Empirical formula vs molecular formula: theoretical yield
Emp = relative number of atoms of each element present % atom economy = mass of atoms in desired product
Molec = actual number of atoms of each element present x100
To calc molec: mass of atoms in all reactants OR all products
1. Find emp formula % uncertainty = uncertainty of equipment x100
2. Find Mr of emp size of measurement
3. Mr given of molec formule / Mr of emp
4. Emp formula X number from 3. KEY DEFINITIONS
Important equations: Mole = is the amount of substance that contains the same
n = m/Mr number of particles as there are atoms in 12.0 g of carbon-12
n = particles/L L = 6.02 x 10^23 cm^3 →/10^3→dm^3 Molar mass (Mr) = mass of 1 mole of a substance in g/mol
n=cxv dm^3 →x10^3→cm^3
OR mass = c x v dm^3 →/10^3→m^3
Conc = moles/volume (mol/dm^3) mol/dm^3 →xMr→g/dm^3
Conc = mass/volume (g/dm^3) g/dm^3 →/Mr→mol/dm^3
Density = mass/volume (kg/m^3)
Moles = vol(dm^3)/24 or vol(cm^3)/24000
⤷ in gases, Ar = 4g/mol →4g takes up 24dm^3 of space
1 mole of gas takes up 24dm^3 of space at RTP
Ideal gas equation:
2 assumptions:
5. Ideal gas molecules don’t attracts or repel one another
6. Gas molecules themselves take up no volume
PV=nRT T = absolute temp (k)
⤷ kPa = dm^3 R = 8.314J/mol k
⤷ Pa = m^3 n = moles of gas
£2.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
laurelgracefell

Also available in package deal

Thumbnail
Package deal
Summary of all chemistry a level (9CH0 edexcel 2015)
-
18 2024
£ 53.82 More info

Get to know the seller

Seller avatar
laurelgracefell St Marylebone CofE sixth form
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
18
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions