100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Uitgebreide interpretatie case Econometrie

Rating
-
Sold
8
Pages
53
Uploaded on
04-04-2024
Written in
2023/2024

Dit is een document dat alle stappen bevat van de case in het vak econometrie van het jaar 2023/2024. Bij elke stap is er de nodige interpretatie samen met de R-output dat van belang is voor het examen. Elke afwijking (theorie) die je moet nagaan in de case wordt uitgebreid besproken! De stappen en interpretatie blijven elk jaar zo goed als het zelfde, enkel het thema en input in R-studio wijzigt. 17/20 behaald in eerste zit door te studeren met dit document!! Indien vragen aarzel niet om mij te contacteren. Indien u de R-code wenst stuur mij ook maar een berichtje!!

Show more Read less
Institution
Module













Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
April 4, 2024
Number of pages
53
Written in
2023/2024
Type
Summary

Subjects

Content preview

CASE ECONOMETRIE 2023-2024
Onderwerp: determinanten van het uurloon

STAP 1

EIGENSCHAPPEN DATA (MET OOG OP INTERPRETATIE)




In vergelijking 1:
- 1 interactieterm = aantal jaren scholing en geslacht
In vergelijking 2:
- 1 interactieterm = aantal jaren scholing en geslacht
In vergelijking 3:
- 1e interactieterm = aantal jaren scholing en geslacht
- 2e interactieterm = geslacht en ras

Dummyvariabelen in 3 vergelijkingen:
- Female_i => referentiecategorie = vrouw
- Nonwhite_i => referentiecategorie = niet-blank
- Union_i => referentiecategorie = geen lid




1

,BESCHRIJVENDE STATITIEK DATA




THEORETISCHE (A PRIORI) HYPOTHESEN

Vergelijking 1 (ln(Wi)=β1 +β2S+β3E+β4E2+β5Female + β6Nonwhitei + β7Unioni + β8Si ∗ Femalei +
εi):


Scholing
H1: We verwachten een positieve impact van scholing op het uurloon van de mensen
H0: 2 ≤ 0
HA: 2 > 0
 Hoe hoger het aantal jaren scholing een persoon heeft, hoe hoger het uurloon van
deze persoon

Ervaring
H2: We verwachten een impact van ervaring op het uurloon van de mensen (tweezijdig)
H0: 3 = 0
HA: 3 ≠ 0
 Men verwacht dat een ervaren persoon meer of minder zal verdienen dan een
onervaren persoon.

Ervaring^2
H3: We verwachten een negatief impact van ervaring^2 op het uurloon. Onze reden hiervoor
is dat we een bergparabool verwachten (eerst een stijging van het loon tot een bepaald punt
en vervolgens een vermindering van het loon) hiervoor moet het getal voor de variabele in
de vergelijking negatief zijn.
H0: 4 ≥ 0
HA: 4 < 0

Female
H4: We verwachten dat geslacht (man) een positieve impact heeft op het uurloon van de
mensen
H0: 5 ≤ 0
HA: 5 > 0
 Men verwacht dat een man gemiddeld meer zal verdienen dan een vrouw




2

,Nonwhite
H5: We verwachten dat ras (blank) een positieve impact heeft op het uurloon van de mensen
H0: 6 ≤ 0
HA: 6 > 0
 Men verwacht dat een blanke persoon gemiddeld meer zal verdienen dan een niet-
blanke persoon

Union
H6: We verwachten dat vakbondslid (lid) een impact heeft op het uurloon van de mensen
(tweezijdig)
H0: 7 = 0
HA: 7 ≠ 0
 Men verwacht dat een vakbondslid gemiddeld meer of minder zal verdienen dan een
niet-vakbondslid

Scholing*Female
H7: We verwachten een sterke positieve impact van scholing en geslacht (man) op het
uurloon
H0: 8 ≤ 0
HA: 8 > 0
 Men verwacht dat een hooggeschoolde man gemiddeld meer zal verdienen dan een
laaggeschoolde vrouw




3

,STAP 2

VERKLARINGSKRACHT MODEL
Verklaringskracht (R2) vergelijking 1 = 64,7%

Significant verschillend van nul?
 Testen mbv F-test

F-TEST
H0 : R2 = 0
HA : R2 ≠ 0

F = 128,8 (zie output basisvergelijking A)
df1 = 7 ; df2 = 492

Kritische waarde =




P-waarde  0

Besluit: De F-statistiek > de kritische waarde. We kunnen de nulhypothese verwerpen omdat
we een P-waarde hebben die zo goed als gelijk is aan 0 dus we maken 0% kans dat we H0
foutief verwerpen dus we gaan het verwerpen. DUS R2 is significant verschillend van 0
(alternatieve hypothese).

HYPOTHESETESTEN




Hypothese 1: Scholing
H0: 2 ≤ 0
HA: 2 > 0

T-statistiek = 17,206
Kritische waarde = 1,648

Aangezien de T-statistiek > kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.




4

,Hypothese 2: Ervaring
H0: 3 = 0
HA: 3 ≠ 0

T-statistiek = 9,278
Kritische waarde = 1,965

Aangezien de T-statistiek > kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.

Hypothese 3: Ervaring^2
H0: 4 ≥ 0
HA: 4 < 0

T-statistiek = -6,703
Kritische waarde = -1,648

Aangezien de T-statistiek < kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.

Hypothese 4: Female
H0: 5 ≤ 0
HA: 5 > 0

T-statistiek = 1,963
Kritische waarde = 1,648

Aangezien de T-statistiek > kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.

Hypothese 5: Nonwhite
H0: 6 ≤ 0
HA: 6 > 0

T-statistiek = 2,635
Kritische waarde = 1,648

Aangezien de T-statistiek > kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.




5

, Hypothese 6: Union
H0: 7 = 0
HA: 7 ≠ 0

T-statistiek = 2,935
Kritische waarde = 1,965

Aangezien de T-statistiek > kritische waarde kan H0 verworpen worden. De
schattingsresultaten ondersteunen onze theoretische verwachtingen.

Hypothese 7: Scholing*Female
H0: 8 ≤ 0
HA: 8 > 0

T-statistiek = -0,170
Kritische waarde = 1,648

Aangezien de T-statistiek < kritische waarde kan H0 niet verworpen worden. De
schattingsresultaten ondersteunen niet onze theoretische verwachtingen.


EIGENSCHAPPEN

Numerieke eigenschappen:

1.De steekproef-regressielijn gaat door de steekproefgemiddelden van Y en X. Het
gemiddelde van 𝑌^ 𝑖 is gelijk aan het gemiddelde van 𝑌𝑖
3. De geschatte storingstermen 𝜇̂𝑖 zijn gemiddeld nul
4. De geschatte storingstermen 𝜇̂𝑖 zijn niet gecorreleerd met Xi
5. De geschatte storingstermen 𝜇̂𝑖 zijn niet gecorreleerd met Y

 Deze eigenschappen gaan altijd op en zijn inherent aan het uitvoeren van OLS

Statistische eigenschappen BLUE:

• Schatter is lineair, indien deze een lineaire functie is van kans variabele Yi => OK
• Schatter is zuiver (unbiased) indien 𝐸(𝛽̂^) overeenstemt met de werkelijke
populatiewaarde β => deze eigenschap gaat op als aan alle GM-veronderstellingen
wordt voldaan (zal dus niet het geval zijn → zie stap 3)
• De schatter is efficiënt (best estimater), als de schatter binnen de klasse van de
zuivere schatters de laagste variantie heeft => deze eigenschap gaat op als aan alle
GM-veronderstellingen wordt voldaan (zal dus niet het geval zijn → zie stap 3)

Gemiddelde van de storingstermen




6
£4.48
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kobevandewalle Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
26
Member since
4 year
Number of followers
15
Documents
6
Last sold
4 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions