A Q UICK G UIDE TO T ECHNIQUES , T IPS , AND B EST P RACTICES
Learn from the Best: Let Genie (ChatGPT) teach you how to make wise Wishes (Prompts)
ChatGPT 4 (author) Sabit Ekin (prompt engineer)
OpenAI Texas A&M University
OpenAI.com
A BSTRACT
In the rapidly evolving landscape of natural language processing (NLP), ChatGPT has emerged as
a powerful tool for various industries and applications. To fully harness the potential of ChatGPT,
it is crucial to understand and master the art of prompt engineering—the process of designing and
refining input prompts to elicit desired responses from an AI NLP model. This article provides
a comprehensive guide to mastering prompt engineering techniques, tips, and best practices to
achieve optimal outcomes with ChatGPT. The discussion begins with an introduction to ChatGPT
and the fundamentals of prompt engineering, followed by an exploration of techniques for effective
prompt crafting, such as clarity, explicit constraints, experimentation, and leveraging different
types of questions. The article also covers best practices, including iterative refinement, balancing
user intent, harnessing external resources, and ensuring ethical usage. Advanced strategies, such
as temperature and token control, prompt chaining, domain-specific adaptations, and handling
ambiguous inputs, are also addressed. Real-world case studies demonstrate the practical applications
of prompt engineering in customer support, content generation, domain-specific knowledge retrieval,
and interactive storytelling. The article concludes by highlighting the impact of effective prompt
engineering on ChatGPT performance, future research directions, and the importance of fostering
creativity and collaboration within the ChatGPT community.
This article was generated using OpenAI’s ChatGPT [1] with prompts provided by Sabit Ekin, who also reviewed and edited the
content.
Keywords ChatGPT · Prompt Engineering · Prompt Engineer · Generative Pre-trained Transformer (GPT) · Natural Language
Processing (NLP) · Large Language Models (LLM)
Image: Created with DALL-E 2 by OpenAI
, Prompt Engineering for ChatGPT
Contents
1 Introduction 3
1.1 Brief overview of ChatGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Importance of prompt engineering in maximizing the effectiveness of ChatGPT . . . . . . . . . . . . . . . . . . . 3
1.3 Objective and structure of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Fundamentals of Prompt Engineering 3
2.1 What is prompt engineering? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The role of prompts in interacting with ChatGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Factors influencing prompt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Techniques for Effective Prompt Engineering 4
3.1 Clear and specific instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Using explicit constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Experimenting with context and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Leveraging System 1 and System 2 questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Controlling output verbosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Best Practices for Prompt Engineering 6
4.1 Iterative testing and refining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Balancing user intent and model creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Harnessing external resources and APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 ChatGPT OpenAI API example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Ensuring ethical usage and avoiding biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Advanced Prompt Engineering Strategies 8
5.1 Temperature and token control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Prompt chaining and multi-turn conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Adapting prompts for domain-specific applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Handling ambiguous or contradictory user inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Case Studies: Real-World Applications of Prompt Engineering 10
6.1 Customer support chatbots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Content generation and editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Domain-specific knowledge retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Interactive storytelling and gaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Conclusion 11
7.1 The impact of effective prompt engineering on ChatGPT performance . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2 Future directions in prompt engineering research and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.3 Encouraging creativity and collaboration in the ChatGPT community . . . . . . . . . . . . . . . . . . . . . . . . 11
2