100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Linear Algebra Summary

Rating
-
Sold
-
Pages
39
Grade
A+
Uploaded on
02-10-2023
Written in
2023/2024

Linear Algebra Summary

Institution
Module











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Module

Document information

Uploaded on
October 2, 2023
Number of pages
39
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

lOMoARcPSD|6392334




Linear Algebra Summary
P. Dewilde K. Diepold

October 21, 2022



Contents
1 Preliminaries .......................................................................................................................................... 2

1.1 Vector Spaces ......................................................................................................................................... 2

1.2 Bases ...................................................................................................................................................... 4

1.3 Matrices ................................................................................................................................................. 5

1.4 Linear maps represented as matrices ................................................................................................. 6

1.5 Norms on vector spaces...................................................................................................................... 11

1.6 Inner products ..................................................................................................................................... 13

1.7 Definite matrices ................................................................................................................................. 14

1.8 Norms for linear maps ........................................................................................................................ 14

1.9 Linear maps on an inner product space ............................................................................................ 14

1.10 Unitary (Orthogonal) maps .............................................................................................................. 15

1.11 Norms for matrices ........................................................................................................................... 15

1.12 Kernels and Ranges .......................................................................................................................... 16

1.13 Orthogonality .................................................................................................................................... 17

1.14 Projections......................................................................................................................................... 17

1.15 Eigenvalues and Eigenspaces ........................................................................................................... 18

2 Systems of Equations, QR algorithm ................................................................................................ 19

2.1 Jacobi Transformations ...................................................................................................................... 19




For more information. Email:

, lOMoARcPSD|6392334




2.2 Householder Reflection ...................................................................................................................... 20

2.3 QR Factorization .................................................................................................................................. 20

2.3.1 Elimination Scheme based on Jacobi Transformations................................................................. 20

2.3.2 Elimination Scheme based on Householder Reflections............................................................... 21

2.4 Solving the system Tx = b.................................................................................................................... 22

2.5 Least squares solutions ...................................................................................................................... 22

2.6 Application: adaptive QR .................................................................................................................... 24

2.7 Recursive (adaptive) computation .................................................................................................... 25

2.8 Reverse QR........................................................................................................................................... 27

2.9 Francis’ QR algorithm to compute the Schur eigenvalue form ........................................................ 28

3 The singular value decomposition - SVD......................................................................................... 30

3.1 Construction of the SVD...................................................................................................................... 30

3.2 Singular Value Decomposition: proof ................................................................................................ 31

3.3 Properties of the SVD .......................................................................................................................... 32

3.4 SVD and noise: estimation of signal spaces ...................................................................................... 34

3.5 Angles between subspaces ................................................................................................................. 37

3.6 Total Least Square - TLS ..................................................................................................................... 37


1 Preliminaries
In this section we review our basic algebraic concepts and notation, in order to establish a common
vocabulary and harmonize our ways of thinking. For more information on specifics, look up a basic
textbook in linear algebra [1].


1.1 Vector Spaces

A vector space X over R or over C as ’base spaces’ is a set of elements called ’vectors on which
’addition’ is defined with its normal properties (the inverse exists as well as a neutral element called
zero), and on which also ’multiplication with a scalar’ (element of the base space is defined as well,
with a slew of additional properties.




For more information. Email:

, lOMoARcPSD|6392334




Concreteexamplesarecommon:
z


1
-3
5
in R 3 : −3
1 5 x




y
5+ j
in C 3: − 3 − 6j ≈ R6
2+2 j

The addition of vectors belonging to the same Cn (Rn) space is defined as:




and the scalar multiplication: a ∈ R or a ∈ C:




Example

The most interesting case for our purposes is where a vector is actually a discrete time sequence {x(k)
: k = 1···N}. The space that surrounds us and in which electromagnetic waves propagate is mostly
linear. Signals reaching an antenna are added to each other.


Composition Rules:

The following (logical) consistency rules must hold as well: x
+ y = y + x commutativity
(x + y) + z = x + (y + z) associativity
0 neutral element x + (−x)
= 0 inverse
distributivity of ∗ w.r. + consistencies



Vector space of functions




For more information. Email:

, lOMoARcPSD|6392334




Let X be a set and Y a vectorspace and consider the set of functions


X → Y.

We can define a new vectorspace on this set derived from the vectorspace structure of Y:


(f1 + f2)(x) = f1(x) + f2(x)

(af)(x) = af(x).

Examples:
(1)
f1 f2
+ = f1 + f2




(2)


+ =




[x 1 x 2 ··· x n ]+[ y 1 y 2 ··· y n ]=[ x 1 + y 1 x 2 + y 2 ··· x n + y n ]


As already mentioned, most vectors we consider can indeed be interpreted either as continous time
or discrete time signals.


Linear maps

Assume now that both X and Y are vector spaces, then we can give a meaning to the notion ’linear
map’ as one that preserves the structure of vector space:

f(x1 + x2) = f(x1) + f(x2) f(ax) =

af(x)

we say that f defines a ’homomorphism of vector spaces’.


1.2 Bases

We say that a set of vectors {ek} in a vectorspace form a basis, if all its vectors can be expressed as a
unique linear combination of its elements. It turns out that a basis always exists, and that all the bases
of a given vector space have exactly the same number of elements. In Rn or Cn the natural basis is given
by the elements
0


For more information. Email:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
morrisacademiamorrisa Bloomsburg University Of Pennsylvania
Follow You need to be logged in order to follow users or courses
Sold
36
Member since
2 year
Number of followers
21
Documents
287
Last sold
3 weeks ago
Pro EXAMS

Welcome, Get legit and latest practice papers, HESI REVISIONS, AQAs, ACT exams, etc.

3.3

4 reviews

5
2
4
0
3
0
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions