100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

AS Level Edexcel Pure Maths Paper 1 2022

Rating
-
Sold
-
Pages
48
Grade
A+
Uploaded on
16-07-2023
Written in
2022/2023

This is the 2022 AS level pure maths paper would recommend if you want good predicted grades and take Edexcel AS level maths












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 16, 2023
Number of pages
48
Written in
2022/2023
Type
Exam (elaborations)
Contains
Only questions

Content preview

Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 8MA0/01
 
Mathematics
Advanced Subsidiary
PAPER 1: Pure Mathematics

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• IfUsepencil
black ink or ball-point pen.
is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre number
Fill in the boxes at the top of this page with your name,
and candidate number.
• clearly labelled. and ensure that your answers to parts of questions are
Answer all questions

• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise

Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 14 questions in this question paper. The total mark for this paper is 100.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P69201A0148*
P69201A
©2022 Pearson Education Ltd.

Q:1/1/1/1/

,1. Find



 3 3 
 8 x − + 5 d x

2 x

giving your answer in simplest form.
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P69201A0248* 

,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 4 marks)



*P69201A0348*
3
 Turn over

, 2. f (x) = 2x 3 + 5x 2 + 2x + 15
(a) Use the factor theorem to show that (x + 3) is a factor of f(x).
(2)
(b) Find the constants a, b and c such that

f (x) = (x + 3)(ax 2 + bx + c)
(2)
(c) Hence show that f (x) = 0 has only one real root.
(2)
(d) Write down the real root of the equation f (x – 5) = 0
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________


4
*P69201A0448* 

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Sfx04 Abingdon Whitney College, Abingdon
View profile
Follow You need to be logged in order to follow users or courses
Sold
48
Member since
3 year
Number of followers
43
Documents
11
Last sold
1 year ago

3.2

5 reviews

5
2
4
1
3
0
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions