100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Wiskunde 'Module 12; analytische meetkunde' GO! Onderwijs

Rating
-
Sold
-
Pages
3
Uploaded on
24-06-2023
Written in
2022/2023

Dit document is een samenvatting van 'Module 12; analytische meetkunde', uit het boek 'NANDO 4D' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institution
Module








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
2e graad
Module
School year
4

Document information

Uploaded on
June 24, 2023
Number of pages
3
Written in
2022/2023
Type
Summary

Subjects

Content preview

Analytische meetkunde

1. SCALAIR PRODUCT OF INPRODUCT VAN TWEE VECTOREN

1.1 Norm van een vector
Definitie
De norm van een vector ⃗ AB is de grootte van de vector en wordt gelijkgesteld aan de lengte van het
lijnstuk [AB]. -> ‖⃗
AB‖=¿ AB ∨¿
Formule
Als A(x1, y1) en B(x2, y2) dan:
‖⃗AB‖=¿ AB ∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²
AB‖=√ a +b ²
AB ) = (a, b), dan: ‖⃗
of als co(⃗ 2

Afstandsformule
¿ AB∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²

1.2 Scalair product of inproduct van twee vectoren
Definitie
Het scalair product van twee vectoren u⃗ en ⃗v is gelijk aan het product van de norm van u⃗ , de norm
van ⃗v en de cosinus van de georiënteerde hoek tussen u⃗ en ⃗v . -> u⃗ ⋅⃗v =‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )
Eigenschap 1
2
u⃗ ⋅ ⃗u=‖u⃗‖ -> u⃗ ⋅ ⃗u =( u⃗ )2
= ‖u⃗‖⋅ ‖u⃗‖⋅cos 0°
2
= ‖u⃗‖
Eigenschap 2
u⃗ ⊥ ⃗v ⇔ ⃗u ⋅ ⃗v =0 -> u⃗ ⊥ ⃗v ⇨ ⃗u ⋅ ⃗v = ‖u⃗‖⋅ ‖⃗v‖⋅ cos 9 0 °
=0

1.3 Analytische uitdrukking van het inproduct van twee vectoren
Definitie
Het inproduct of scalair product van de vectoren u⃗ (x1, y1) en ⃗v(x2, y2) is de som van het product van
de x-coördinaten en het product van de y-coördinaten. -> u⃗ ⋅ ⃗v =x1 x 2+ y1 y 2

1.4 Hoek tussen twee vectoren
Formule
Als co(u⃗ ) = (x1, y1) en co( ⃗v ) = (x2, y2) dan:
x1 ⋅ x 2+ y 1 ⋅ y 2
cos ( ⃗u^
, ⃗v ) =
Bewijs
√x + y ⋅ √x + y
2
1
2
1
2
2
2
2


Gegeven: u⃗ met coördinaat u⃗ (x1, y1)
⃗v met coördinaat ⃗v (x2, y2)
Oplossing:
1) u⃗ ⋅ ⃗v =‖u⃗ ‖⋅‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )

met: ‖u⃗‖= x 21+ y 21
lm ‖u⃗‖= √ x + y 2
2
2
2
2) u⃗ ⋅⃗v =x1 x 2+ y1 y 2
Besluit: ‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v ) ¿ x 1 x 2 + y 1 y 2
x1 ⋅ x 2+ y 1 ⋅ y 2 1
cos ( ⃗u^
, ⃗v ) =
‖u⃗‖⋅ ‖⃗v‖
x1 ⋅ x 2+ y 1 ⋅ y 2

cos ( ⃗u^
, ⃗v ) = 2 2 2 2
£4.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
thibauttaminiau Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
71
Member since
2 year
Number of followers
22
Documents
339
Last sold
1 week ago

3.8

12 reviews

5
5
4
3
3
2
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions