100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

 Edexcel A Level 2022 PAPER 1: Pure Mathematics 1

Rating
-
Sold
-
Pages
48
Grade
A+
Uploaded on
24-06-2023
Written in
2022/2023

 Edexcel A Level 2022 PAPER 1: Pure Mathematics 1












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
June 24, 2023
Number of pages
48
Written in
2022/2023
Type
Exam (elaborations)
Contains
Only questions

Subjects

Content preview

S
IC
AT
EM
Please check the examination details below before entering your candidate information
TH



Candidate surname Other names
MA




Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 9MA0/01
 
Mathematics
Advanced
PAPER 1: Pure Mathematics 1

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical
formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• Answer all questions and ensure that your answers to parts of questions
are clearly labelled.
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise

Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 16 questions in this question paper. The total mark for this paper is 100.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P69601A0148*
P69601A
©2022 Pearson Education Ltd.

Q:1/1/1/1/

, S
IC
AT
EM
TH



1. The point P (−2, −5) lies on the curve with equation y = f (x), x∈
MA




Find the point to which P is mapped, when the curve with equation y = f (x)
is transformed to the curve with equation
(a) y = f (x) + 2
(1)
(b) y = | f (x) |
(1)
(c) y = 3f (x − 2) + 2
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P69601A0248* 

, S
IC
AT
EM
TH
MA



Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 4 marks)



*P69601A0348*
3
 Turn over

, S
IC
AT
EM
TH



f (x) = (x − 4)(x2 − 3x + k) − 42 where k is a constant
MA




2.
Given that (x + 2) is a factor of f (x) , find the value of k.
(3)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________


4
*P69601A0448* 

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
codersimon West Virgina University
View profile
Follow You need to be logged in order to follow users or courses
Sold
757
Member since
3 year
Number of followers
477
Documents
6114
Last sold
3 days ago
**SOUNDEST LEANING MATERIALS FROM CODERSIMON **

Learning is not attained by chance; it must be sought for with ardor and diligence On this page, you find exams,tests,summaries, notes ,documents, package deals, and flashcards offered by codersimon

3.8

83 reviews

5
41
4
12
3
15
2
4
1
11

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions