S
IC
AT
EM
Please check the examination details below before entering your candidate information
TH
Candidate surname Other names
MA
Centre Number Candidate Number
Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 9MA0/01
Mathematics
Advanced
PAPER 1: Pure Mathematics 1
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical
formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• Answer all questions and ensure that your answers to parts of questions
are clearly labelled.
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 16 questions in this question paper. The total mark for this paper is 100.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
*P69601A0148*
P69601A
©2022 Pearson Education Ltd.
Q:1/1/1/1/
, S
IC
AT
EM
TH
1. The point P (−2, −5) lies on the curve with equation y = f (x), x∈
MA
Find the point to which P is mapped, when the curve with equation y = f (x)
is transformed to the curve with equation
(a) y = f (x) + 2
(1)
(b) y = | f (x) |
(1)
(c) y = 3f (x − 2) + 2
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P69601A0248*
, S
IC
AT
EM
TH
MA
Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 4 marks)
*P69601A0348*
3
Turn over
, S
IC
AT
EM
TH
f (x) = (x − 4)(x2 − 3x + k) − 42 where k is a constant
MA
2.
Given that (x + 2) is a factor of f (x) , find the value of k.
(3)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P69601A0448*
IC
AT
EM
Please check the examination details below before entering your candidate information
TH
Candidate surname Other names
MA
Centre Number Candidate Number
Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 9MA0/01
Mathematics
Advanced
PAPER 1: Pure Mathematics 1
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical
formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• Answer all questions and ensure that your answers to parts of questions
are clearly labelled.
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 16 questions in this question paper. The total mark for this paper is 100.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
*P69601A0148*
P69601A
©2022 Pearson Education Ltd.
Q:1/1/1/1/
, S
IC
AT
EM
TH
1. The point P (−2, −5) lies on the curve with equation y = f (x), x∈
MA
Find the point to which P is mapped, when the curve with equation y = f (x)
is transformed to the curve with equation
(a) y = f (x) + 2
(1)
(b) y = | f (x) |
(1)
(c) y = 3f (x − 2) + 2
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P69601A0248*
, S
IC
AT
EM
TH
MA
Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 4 marks)
*P69601A0348*
3
Turn over
, S
IC
AT
EM
TH
f (x) = (x − 4)(x2 − 3x + k) − 42 where k is a constant
MA
2.
Given that (x + 2) is a factor of f (x) , find the value of k.
(3)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P69601A0448*