Fysiochemische eigenschappen van geneesmiddelen
1. GM in vaste toestand
1 Introductie
Terminologie:
» Drug : geneesmiddel
o Gerules bestaan uit actieve stof + hulpstoffen
» Actieve stof
» Formulatie = doseringsvorm
» Hulpstoffen = excipients
2 Amorfe, kristallijne en polymorfe geneesmiddelen
A. Algemeen
» Molec. : meestal gesynthetiseerd in opgeloste toestand --> Hoe in vaste toestand verkrijgen:
o Complexvorming --> neerslag : filteren
o Evaporatie : verdampen solvent
o Bevriezen
Telkens nog stap nodig om GM in vaste vorm te krijgen
Vaste stoffen kn in ≠toestanden vrkomen:
» Kristallijne vorm : GM komen als kristallen vr
o Geordende posities tov elkaar : geordend in vaste vorm
o Gedefinieerde & meestal gemakk. (microscopisch) herkenbare structuren
o bestaande uit 3D "rooster" wrin indiv. molec. aan zijknten v kristalrooster geplaatst
> Bv. meth-amphetamine, cocaine, acyclovir
» Amorfe materialen : GM komen zonder enige vorm vr
o niet goed gedefinieerd
o eerder willekeurig, ongeordend (microscopisch) uiterlijk
=> Vanaf opgelost : geen sprake meer v amorf of kristallijn --> enkel in vaste vorm
» Terminologie : gebaseerd op manier indiv. molec. in vaste toestand zijn verpakt
De kristallen ve bep. stof kn in grootte variëren:
» Macrokristallen:
o (gemiddelde) grootte meeste GMkristallen : "10tallen v micrometers"
» Nanokristallen:
o GMkristallen ve gemiddelde grootte v "100en nanometers"
Hoe de grootte vd kristallen te bepalen?
» Microscopisch
o Lichtmicroscoop : resolutie : +/- 0,5 µm
o Elektronenmicroscoop : resolutie enkele nm
» Dr middel van zeefanalyse
o Zeeftoren : apparatuur opgebouwd uit ≠zeven --> ≠poriegrootte
o Zorgt vr 1e indicatie grootte kristallen
» Dr middel van lichtverstrooiing (zie later)
, 2
Zeefanalysen adhv zeeftoren
Poriegrootte Stof : 100 gram
Stel: 50 µm poriegrootte --> 2g na zeef achter : 2g/100g => 2% ≥ 50 µm
Stel: 25 µm poriegrootte --> 65g na zeef achter : 65g/100g => 65% ≥ 25 µm
≤ 50 µm
Dimentieladder !!
Cel mens : 10 - 100 µm
Bacterie : 1-10 µm
Virussen : 100 nm
Proteinen/lipiden : 1 – 10 nm
Benzeen, glucose : 1 nm
C – C, C – H : 0,1 nm
I, K : 0,3 nm
Nanokristal GM : +100 nms
Microkristal GM : >> µms
Polymorfisme
» Verbindingen in oplossing kn stollen in kristallijne toestand of amorfe toestand
o In ene batch : GM in amorfe toestand
≠vormen
o Andere batch : GM in kristallijne toestand
o Verbindingen kn kristalliseren als ≠soorten kristallen tegelijkertijd
o Deel kristal, deel amorf
» Molec op ++ manieren in kristal rangschikken: verschil verpakking, oriëntatie/conformatie
» Thermodynamisch aspect :
o ≠kristaltypen ve polymorf GM hb neiging om langzaam om te zetten in kristaltype dat
thermodynamisch meest stabiel
= omzetting nr stabieler kristaltype ifv tijd : energie komt vrij bij aangaan binding
--> Energetisch lagere toestand : spontaan gebeuren
» Hb ≠fysische & chemische eigenschappen; bijv. verschillend smeltpunt, oplosbaarheid
o Bv. bij spontaan omleggen vr stabiliteit problemen :
» Amorfe vorm --> vaak ↑oplosbh dan kristallijne vorm
o noodz. type kristallijne/amorfe toestand GM in elke batch te bepalen
, 3
B. Bepalen of een medicijn kristallijn, amorf of polymorf is
Microscopisch : lichtmicroscopie, elektronenmicroscopie
» Wat zie je? - Kristallen = kristallijn
- Verschillende kristallen = polymorf
- Geen kristallen = amorf
Calorimetrisch :
» Smeltpunt gedetecteerd : kristallen aanwezig (--> gekenmerkt dr Tsmelt)
o Bv. corticosteron : sterkere interacties = ↑Tsmelt --> ++ energie nodig om overwinnen
» Geen smeltpunt gedetecteerd, wel glasovergangstemperatuur (Tg) : amorfe materialen aanw.
» Smeltpunt + Tg gedetecteerd : polymorf
» Verschillende smeltpunten gedetecteerd : ≠kristallen aanwezig : polymorf
=> Differentiële scanning calorimetrie = ++gebruikte calorimetrische techniek om kristallisatie-, smelt-
en glasovergangstemperaturen v solid state GM te bepalen
C. Biofarmaceutisch belang vd kristallijne vs. amorfe toestand ve medicijn
Amorfe vaste stoffen
» Inherent minder stabiel : hogere energietoestand dan kristallijne vaste stoffen
» hebben potentieel om in loop v tijd omzetten in thermodynamisch stabielere kristallijne vorm
» Vertonen sterkere chemische reactiviteit : dr hogere moleculaire mobiliteit
o En dus ↑snelheid chemische afbraak
» Vaak ↑oplosbh dan kristallijne
» Gebruik = mogh. om BB te verbeteren igv slecht in water oplosbare GM
≠redenen belangrijk om bepalen of medicijn amorf, kristallijn of polymorf is :
» Invloed op oplossnelheid
» Invloed op farmaceutische verwerkbaarheid vh GM in vaste toestand
o Bep. kristallen zijn makkelijker te vervormen (tot tablet bv.) dan andere
Opmerking over belang kristallen in farmaceutische industrie:
» verschillende kristalstructuren, polymorfen kn elk wrd gepatenteerd
o drdat oplosbaarh = effectiviteit GM beïnvloed
o stabiliteit, toxiciteit & verwerkbaarheid : afh. polymorfe vorm
» Crystallics® : bedrijf, gericht op vinden alle polymorfen v nieuwe GM & procesomstandigh
o Oplosmiddel, zoutvormer, temp, conc en koeltijd --> gevarieerd :
▪ gemakk 5-15 ≠polymorfen vormen --> Doel : ++robuuste & actieve kristalvorm
3 Onderkoelde vloeistoffen en glazige toestand
A. Wat zijn onderkoelde vloeistoffen?
» Supercooled liquids = glassy state = amorfe GM --> GM in glastoestand, onderkoelde vloeistf
» Vloeistof onder vriespunt afgekoeld --> neiging tot kristalliseren
» Kristallisatieproces begint ergens = nucleatie
o Nucleatie : plaats in aanwh ve zaadkristal/kern waaromheen zich kristalstructuur kn
vormen => vaste stof
▪ Bv. fout aan binnenknt container, onzuiverheid in water, vold. verstoring
, 4
o Als kristallen geschikte opp-onvolkomenheid kn vinden wnr vriespunt bereikt
--> stof bevriest bij verwachte temperatuur
» Dergelijk oppervlak niet beschikbaar : geen nucleatie
o vloeistof blijft op temp (warmte nog steeds verwijderd) --> blijft in vloeibare toestand
=onderkoelde vloeistof.
▪ Wrs zeer zuivere & schone materialen met hogere viscositeit
o container geschud of klein kristal toegevoegd => snelle kristalisatie
Voorbeeld 1 : zuiver water
Wat gebeurt wanneer we water langzaam afkoelen?
1. onderkoelde vloeistof = vloeistof bij temp onder het vriespunt --> wrd niet vast
2. onderkoelde vloeistof = thermodynamisch instabiel
--> tenietgedaan dr vorming vavn waterkristallen, met vrijkomen v energie/warmte & T↑
3. Balans tsn water en ijs:
--> warmte vrij dr vorming kristallen = tenietgedaan dr verdere afkoeling water
--> Tot water volledig bevroren = balans & blijft temperatuur 0°C
4. Water is volledig gekristalliseerd: alleen ijs, T↓
Trage afkoeling
1. Supercooled state : water nog vlb
> Ookal onder vriestemp
= metastabiele toestand
2. Bij verstoring (tikken, schudden) : metastabiele toestand opgegeven
= Kristalisatie
> Watermolec. Gn bindingen aan = energie vrij
Stijging Temp tot 0°C
3. Balans : overblijvend water kristalliseert verder
4. Alleen ijs : pas als al het water gekristalliseerd
Wat gebeurt er als we water snel afkoelen?
» Snelheid vlstf afgekoeld = groter dan snelheid wrmee molec zich kn uitlijnen in kristalrooster
» energie = laag --> water : stroperig & vloeistof als "vaste stof" ervaren :
o nog steeds vloeistof --> zeer hoge viscositeit = amorf water
» Temp wrbij verandering in eigenschappen optreedt = glasovergangstemperatuur (Tg)
o -113 °C vr water : onder dit punt --> water in glassy state = vitrificatie
= onderkoelde vloeistof die eruit ziet zoals glas
Snelle afkoeling
» Temp daalt : bij 0° geen kristallen
o Onvoldoende tijd vr ordening & vormen kristallen
» Kinetische energie blijft dalen zonder vorming kristallen
=> Amorf water : water vast, zonder kristallen
= metastabiele toestand : krasje --> plotse uitkristallisatie