100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Lecture notes

Ecuaciones Diferenciales en Derivadas Parciales

Rating
-
Sold
-
Pages
23
Uploaded on
17-02-2023
Written in
2022/2023

Incluye los métodos de resolución de las siguientes ecuaciones: -Ecuaciones diferenciales en derivadas parciales de primer orden. -Ecuación de Ondas. -Ecuación de Calor. -Ecuación de Laplace. También incluye la teoría acerca de las series de Fourier para resolver las ecuaciones.

Show more Read less
Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
February 17, 2023
Number of pages
23
Written in
2022/2023
Type
Lecture notes
Professor(s)
María higuera
Contains
All classes

Subjects

Content preview

ECUACIONES DIFERENCIALES ENDERIVADAS PARCIALES DE
PRIMERORDEN



CONSERVADON
LEYES DE AD



·
u(x.t) Magnitud(masa, energia etc.


·
p(x, t, u,u(...) Flujo


f(x, t, u) Fuentes
·




Let be conservacise forma integral
u(x.t)dx 8(x2 0/15
1)"20x
·
on =

-




20
Lex be conservacios forma diferencial (i.e., AX):
Gv(X,t) g
·
X2 x1
*
en + +
=




2/




ONDAS ESTACIONARIAS



La ecuacio's diferencial en derivadas parciales mas simple para una funcion de dos variables
es 0
=




t


Para resolverla integramos a ambos lados de la ecacion:
2u(s,y)ds u(t,t) u(0,4
= -
0




por esola solucion dela forma:u(t,x) f(x),
as conde
f(x) w(0.4)
= =




El lnico requerimiento es
que f(x) sea sufficientements regular.


La solucion representa una anda estacionaria (no depende del tiempol.



ONDAS VIAJERAS. ECUACION DETRANSPORTE



Considers la siguiente ecuacion:
Gu cayto +




Aesta ecuacion se la conoce can nombred ecuacion de transporte.

Es necesario especificar la solucion en untiempo inicial, dando lugar al problema devalores iniciales. ults, x) f(x)
=
&tCR

xU
u(t,y)
x(t)"du-2u+Oudoet
11x
x =




d* (t
=(t)
a
=
=
+
1 >
Curva caracteristic
LX (t k
+




considere unobservador describiendo una trajectoria (x (t), 4). Como varia what) segan la perspectiva del observator?

du du(x(t),t)
uxdy ut
=
=




dt dt

,dy c
=




ydy u++..
=




Por tanto las soluciones de la ecuacion de transporte son las mismas
que las del sistema de EDOs.


Ut (uX 0
+
=
dx 0
=




dt




u(t,y) f(X) =



du=o
Eiemple.

xU
+chy=
Gu 0;u(0,X) f(X
=




2t




u(t,y)
x(t)du-2u+Oudoet
11x
x = LX (t k
+




d* (t caracteristic
=(t)
u
a
=
=
1
+ >
Curva
f(x) w(0,X)
=




x(t) (t 11
= +

1(0) 5 = +
k7 5 =




↑ ↑




u(t,X(t)) k2u(0) f(s)
f(s) ke
=
=
= =




+
it
X(t,s) (t =
s
+
+
5 1 = -
ct

Yu(t, x) f(x (t)
=

ult,x) f(x ct.)
=




u(t,s) f(s);u(x,t)
f(x ct)
=

=
-




ECUACIONES CASI-LINEALES:METODO DE LAS CARACTERISTICAS


a(x,y,u)ux p(X,y,u)ay ((X,y,u)(I) +
=




15) (a,p,c).(ux,uy, 1)
+
= 0
Gualquier curva superficie S tiene vector tangente a (a,p,c)


has curvas caracteristicas satisfacen el signiente sistema:



EX a(x,y,u);d b(x,y,u);du can see
=
= -




La elacion (1) tiene condiciones iniciales:u/f(s), g(s)) h(s),
=
se



Entonces el sistema tiene condiciones iniciales:



1(0) 10(s,0)
=
=

f(s),y(0) y0(s.0) =g(s), =
w(0) 40(s,0) h(s)
=
=

, Ejemplo:

S.u u(X,y)
=




5:H(x,y,u) u(x,y)
=
-
u 0
=




dy ((X,y,u) u(t,s) 0
=

=




dy a(X,y,n) x(t,5) 0
=
=




dy=b(x,y,u) y(t,s) 0 =




y(0) X(s);y(0) y(s);u() u(s)
= = =




S:(X,y,u)(t,s)



METODO PARA RESOLVER LAS ECUACIONES CASILINEALES
DE LAGRANGE




Ejemploi



u,isent
1,ux x*7 yu
1
+
=
10(s) 8
=




tolst=s
no(s) sen(s)




u1o."1.
s

e
=




·
La solucion aparece de form a
(0-426
/4 (00*7c8R
7




( (, (1,1,u) x
-
=
11i
=
=
=




by X
=
implicita, como interseccion de dos
Dt


(* (2u*
du u
dly: /0u (0 4(0,4,u) = Superficies.In
=
su +
u
=
=
=
= ·




bt ↑
&




solucion general:FCP IFFFuncion = arbritarial sF( = =0 f(4242) ve*
= =




u(0,y) sen(y)= 5(4e(2) senye*;5(4)= seny
+
=




ne*k senle*(2):u(,1) eksenlie*2)
= =
£11.24
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
AeroLibrary

Get to know the seller

Seller avatar
AeroLibrary Universidad Politécnica de Madrid
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
0
Last sold
-

Estudiante de segundo curso de Ingeniería Aeroespacial en la Universidad Politécnica de Madrid. Todas las asignaturas aprobadas hasta la fecha con una media de 8.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions