100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskundige Methoden I (Calculus)

Rating
-
Sold
2
Pages
28
Uploaded on
20-12-2022
Written in
2021/2022

Het vak wiskundige methoden in de fysica I wordt gegeven door David Eelbode aan de universiteit van Antwerpen. Het gedeelte calculus wordt gegeven aan de fysici en wiskundige.

Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
December 20, 2022
Number of pages
28
Written in
2021/2022
Type
Summary

Subjects

Content preview

MOHAMED LAH AA FYSICA BAI
SAMENVATTING WISKUNDIGE METHODEN VOOR DE FYSICA I ( CALCULUS )
HOOFDSTUK (I) LIMIETEN EN CONTINUÏTEIT IN EEN PUNT :

DEFINITIE :


Z f :D → IR EEN FUNCTIE MET DOMEIN D, EN BESCHOUW QE D. DE FUNCTIE IS CONTINU IN Q ALS EN SLECHTS ALS : y
n >


( HE > 0) ( 75 > 0) ( H ✗ C- D) ( IX -
al < S | 5-( x ) -
5- (a) < E ) „ a) + { is • Y = -5(×)

5- ( a) -0




|
5-(a) EN-

°


DE FUNCTIE -5 IS DAARAANTEGEN DISCONTINU IN Q ALS EN SLECHTS Als :

( 7E > 0) (VS > 0) (2x c- D) ( 1×-01<8 EN lfcx) 5- (a) 1-
≥ E)
>
a ;] ;[ ÷, ×

VOORBEELDEN :

1) TOON AAN DAT DE FUNCTIE 5- (x ) = 2X -
3 CONTINU IS IN ✗ = 4 .




GEG : 5- (x) = 2×-3 ,
✗ = 4 E>0
,


GEV : S = ?

/ 2×-3-51=12×-81--21×-41 8=
OPL Ifcx) 5- (4) 1 28 E 28 Ez ☒
: -
= < =




2) TOON AAN DAT ✗ t> Mxtb CONTINU IS IN ALLE QEIR .




1m18
lf (x) 5- (a) 1 bl IMX mal 1m11 al E. = 1m18 S
§ ☒
- = 1m ✗ + b- MQ -
= - = ✗ -
< =

,



2
3) GEBRUIK DE ( E ) S) DEFINITIE OM AAN TE TONEN DAT - ✗ t> ✗ CONTINU IS IN ALLE QEIR .




lfcx) -
f- (a) 1--1×2-021 = 1×-011×+01 =) 1 ✗ + al = IX -
Q 1- Zal ≤ 1 ✗ -
al 1- 21 QI ( St 2191

< 8 ( St 21011 ) ENKEL + WANT S> 0

Í
" '
821-2101 St E
'

E = 82+210118 ⇐) = 0
f =
-
2101 4012 -
4E =
-
1 al + 02 -
E f = -1011 t 012 -
E ☒
2



4) GEBRUIK DE ( Eis) DEFINITIE OM -
AAN TE TONEN DAT DE FUNCTIE ✗ t> OF CONTINU IS IN [ o, o [ .




Als 01=0 :


lfcx) -
5- (a) 1 = IN 1 = RT < g E= TE S = EZ
ALS Q =/ 0 :




lfcx) -
fca) / = IVI - Tal =
( rx -
ra) ( Atta)
( rx 1- Ta)
= 1 ✗

rxt ra
- al ≤ 1x -




ra
al <
¥ E =

¥ 5- TQE ☒

↳ × ≥0


'
5) GEBRUIK DE ( Eis) DEFINITIE -
OM AAN TE TONEN DAT DE FUNCTIE ✗ t> ✗2+1 CONTINU IS IN HET PUNT Q = 1 .




( V2 ) ( V2 ) ✗21-1
'

|
' '
✗ 21-1 2
/ fcx) f- (a) / = ✗ 2+1 12+1 ✗ 2+1
*
1×2-11 1×-111×+11
-

-
- = -
= ≤ =
'

( V2 ) ✗ 21-1 * V2
'

✗ 2+1 *

E-TÌO Er >0




1×-1+21 ≤ 1×-11+2<8+2 If ( x ) S ( 8+2) 8+25=38
1×+11 = = ) -5 (a) 1 < ≤ g ≤
§
-




EIS SÉI
5- min
{Ç } .
' ☒



6) GEBRUIK DE ( Eis) DEFINITIE OM AAN TE TONEN DAT DE FUNCTIE ✗
-
t> 1×1 CONTINU IS IN ALLE QEIR .




/ 5- (x) -
5- (a) 1=11×1 -
101 / ≤ 1 ✗ -
al <
f 8 = E



EIGENSCHAP :




PAAR HANDIGE EIGENSCHAPPEN DIE JE KAN GEBRUIKEN B ABSOLUTE WAARDES :

(I) / Qbl = 101 Lbl -
(I) / Qtbl ≤ tal + lbl (II) 11011 -
lbl 1 ≤ IQ bl -




STELLING :

ALS f : Df → IR CONTINU IS IN QE Dt EN g :
Dg → IR CONTINU IS IN 5- (a) , EN ALS { tcx ) : ✗ C- Dt } (
Dg ,




DAN IS DE SAMENSTELLING gof :
Df -3112 CONTINU IN Q .




IJ IJ

, STELLING :

BESCHOUW TWEE REËLE FUNCTIES f EN 9 , BEIDEN CONTINU IN QE IR .
DAN GELDT :

( I) ftg ,
f- g EN
-


tg Z N CONTINU IN Q


(I) ALS 9 (a) ≠ 0 DAN IS t/ CONTINU IN Q
, g
(II) If I IS CONTINU IN Q




STELLING :

ALS f CONTINU IS IN QE Df EN -5 (a) =/ 0 DAN BEHOUDT DE FUNCTIE 5- HAAR TEKEN IN EEN OMGEVING VAN Q ( ] a- S, at I [)
,
.




BWS :


( HE > 0) ( 78 > 0) ( Y ✗ C- D) ( 1 ✗ - al < S If (x) -
fca) 1 < E) 0 < 5- (a) -
E < 5- ( x ) ( f ( a) t E


KIES E =
1-25 ( a) >0 : 1 ✗ al- < f 5- (a) -
E =
1-2 5- (a) < f ( x) KIES E. = -


1-2 5- ( a) =
S : 5- (x) ( f (a) + E = 5- (a) t
f¥ =
¥) < 0
↳ POSITIEF

DEFINITIE :


Z f :D -3112 EEN FUNCTIE MET DOMEIN D , EN BESCHOUW QED .
DE FUNCTIE f IS RECHTS CONTINU IN Q ALS EN SLECHTS ALS :


( HE > 0) ( 7s > 0) ( ✗ C- D) ( Q ≤ ✗ < a +8 1 5- (x) -
5- (a) t < E)

DE FUNCTIE 5- IS LINKS CONTINU IN Q ALS EN SLECHTS ALS :

( HE > 0) ( 7s > 0) ( ✗ C- D) ( Q 8 <
-
✗≤ Q lfcx) -
5- (a) t ( E)

STELLING :

EEN FUNCTIE f :D → IR IS CONTINU IN Q C- D ALS EN SLECHTS ALS f LINKS -
EN RECHTSCONTINU IS IN Q .




DEFINITIE :


EEN REËLE FUNCTIE 5- IS BEGRENSD IN EEN DEELVERZAMELING DE Dt VAN HAAR DOMEIN ALS EN SLECHTS ALS ER TWEE REËLE GETALLEN

M EN M BESTAAN ZODANIG DAT
,
: U✗ C- D : m ≤ 5- (x) ≤ M MEN NOEMT M EEN ONDERGRENS EN M EEN BOVENGRENS VOOR 5- IN D .
,





CONTINUE FUNCTIES WORDEN NAAR BOVEN EN ONDERBEGRENSD


EENZ DIG CONTINUE FUNCTIES WORDEN SLECHTS EEN VAN BEIDE BEGRENSD

• DISCONTINUE FUNCTIES Z N ONBEGRENSD



STELLING :

INDIEN EEN NIET LEDIGE VERZAMELING AC IR NAAR BOVEN BEGRENSD IS , DAN HEEFT A EEN KLEINSTE
-
BOVENGRENS OF SUPREMUM 7 :




Ha c- A : a ≤
§ VOORBEELD :
{ }
'
SUPCA ) 1
G SUP ( A) A i
j
= ..
=
= , ,
. . .
, , ,
.




{ > 0) (jas c- A) ( G -

E < QS < &


STELLING :

INDIEN EEN NIET LEDIGE VERZAMELING AC IR NAAR
-
ONDER BEGRENSD IS , DAN HEEFT A EEN GROOTSTE ONDERGRENS OF INFIMUM Y :




{
" c- A : " ≥ M VOORBEELD :
y = WE ( A) A =
{ 1 , ± 1-3 ,
,
. . .

, j ,
. ..

} INFCA ) =
0


(HE > 0) ( Jai C- A) ( Mt E > ai ≥
M)



DEFINITIE :


EEN REËLE FUNCTIE f :D → IR IS CONTINU IN D ALS EN SLECHTS ALS DIE CONTINU IS IN ELK PUNT QED VAN HAAR DOMEIN .




ijIJIJ IJ

, STELLING :

INDIEN EEN FUNCTIE f : [ a , b] → IR CONTINU IS IN HET INTERVAL [a , b] , DAN IS f OOK BEGRENSD IN [a , b ] .




BWS :


STAP 1) VERDEEL [al b] IN 10 GEL KE STUKKEN → KIES EEN INTERVAL [Qi ,
b , ] WAAROP fcx) ONBEGRENSD IS .




STAP 2) VERDEEL [Qi , b ,] IN 10 GEL KE STUKKEN → KIES EEN INTERVAL [Qz
, bz] WAAROP f-(x ) ONBEGRENSD IS .




HERHAAL DIT N KEER → ↑ [ Qn , bn] =
{r} MET RE [a , b] ( CANTOR INTERSECTIONTHEOREM) .



n= ,




PER DEFINITIE GELDT : ( HE >0) ( JS >0 ) ( f ✗ C- D) ( r S - (✗( rts 5- ( r ) -
E < -5 (x ) ( 5- ( r ) t E)

DIT WIL ZEGGEN DAT 5- (x ) IS BEGRENSD OP ] f- 8 , rt S [ KIES n C- IN MET [an , bn] ( ] r 8, -
r + JE ,
,




}
DAN : (I ) 5- (x ) ONBEGRENSD IN [Qnibn] 5- (× ) IS BEGRENSD
tegenstr dig ! AANAME VERKEERD .




(I) 5- (x) BEGRENSD IN [an , bn ]



STELLING ( WEIERSTRASS) :

ALS f : [a , b] → IR CONTINU IS , DAN HEEFT -5 OP [a , b ] EEN MAXIMUM EN EEN MINIMUM .




BWS :


VOOR FUNCTIE 5 DIE CONTINU IS IN [aib] BESTAAT ER EEN BOVENGRENS M lfx c- [Qib] : 5- (x ) ≤ M
, .




WE BEWEREN DAT ER EEN CE [a , b] BESTAAT ZODAT 5- ( c) = M .




WE DEFINIEEREN DE FUNCTIE b ] → IR : ✗ H (x) : = M 5- ( x)
g :[
: a,
-

.




- '
CONTINU EN STRIKT POSITIEF ( IRÒ ) , ER GELDT OOK DAT ( 9(x)) CONTINU IS OP [a , b]
g IS BEGRENSD
.

,


ER BESTAAT DUS EEN SUPREMUM BE / R ZODANIG DAT
# m.ly
=
,
≤ 9 ,
ER GELDT OOK : M -
f (x ) ≥
§ M -




§ ≥ 5- (x ) .




WE HEBBEN EEN BOVENGRENS GEVONDEN DIE STRIKT KLEINER IS DAN M , DIT IS IN TEGENSPRAAK ! ER BESTAAT EEN CE [aib] ZODANIG DAT 5- ( c ) = M .




DEFINITIE :


( I) WE NOEMEN EEN FUNCTIE f : ✗ → Y EEN INJECTIE VAN ZODRA AAN ÉÉN VAN DE VOLGENDE VOORWAARDEN VOLDAAN IS :




U ✗1 ,
✗ 2 C- ✗ : f(✗ , ) = f- ( ✗ 2 ) ×, = ✗2



U ✗1 ,
✗ 2 C- ✗ :
× , ≠ ✗2 f (k ) ≠ 5- (x2 )

BESTAAT ER HOOGSTENS ÉÉN ELEMENT ✗ C- ✗ WAARVOOR GELDT DAT 5- ( x )
VOOR ELK ELEMENT
y EY y
• =
.




( I) WE NOEMEN EEN FUNCTIE f : ✗ → Y EEN SURJECTIE VAN ZODRA AAN ÉÉN VAN VOLGENDE VOORWAARDEN VOLDAAN IS :




H c- Y, 3- ✗ C- ✗ : f ( x) =
y

f(x) = Y

VOOR ELK ELEMENT BESTAAT ER MINSTENS ÉÉN ELEMENT ✗ C- ✗ WAARVOOR GELDT DAT 5- (x )
y EY y
• =
.




( II) WE NOEMEN EEN FUNCTIE f: ✗ → Y EEN B ECTIE VAN ZODRA AAN ÉÉN VAN VOLGENDE VOORWAARDEN VOLDAAN IS :




f IS ZOWEL EEN INJECTIE ALS EEN SURJECTIE


H C- Y, 7 ! ✗ C- ✗ : 5 (x ) = y


VOOR ELK ELEMENT
y EY BESTAAT ER PERCIES ÉÉN ELEMENT ✗ C- ✗ WAARVOOR GELDT DAT 5- (x ) =
y .




" "
"
. .
.


.
.
.
. .



- _


. . .
.



"
"

, ,
.




INJECTIE SURJECTIE B ECTIE

VOORBEELDEN :

1) DE FUNCTIE ✗t 3×+2 IS EEN INJECTIE 3011-2 = 351-2 =) Q = b f. ( a) = 5- ( b)



2) DE FUNCTIE ✗ t ✗
2
IS GEEN INJECTIE 012 = 5 ☒ = TE ±Q = ±b a = b, a = -
b I


3) DE FUNCTIE f : IR → [ I -

, I] : ✗ t COS ( X) IS GEEN INJECTIE , WANT ELK GETAL 1×1 ≤ 1 HEEFT ONEINDIG VEEL ORGINELEN .




IJ
ijij IJ

ij
£4.93
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
MohamedLakjaa

Get to know the seller

Seller avatar
MohamedLakjaa
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
5 year
Number of followers
2
Documents
2
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions