,Domain Codomain and
range
:
,
codomain
f : IR > o → Rao f-☒
dofnain
"
range
Domain
Range
Composition of functions
f
' '
☐ → E :D → E
:
g
f
f- ( x )
gcx )=T× glflx)) domain off
-9> if = ✗ s to we need to restrict the
compose
-
→
☐
F D
'
,
we need
range of f contained in IR > o so we take domain
E
✗ 2s ( IRIS)
if ✗ Is then
g(f(x))=xFs
Graphs and parametric functions :
2
I
y ✗
= -
•
•
• •
•
of function f.IR IR
parametric
→
every graph a is a function
""
%)
Parametric functions :
•
( cos
'
f :[0,21T] → 1122 ✗ ( t) = cos ( t)
f- (t) ( coslt) , sinlt)) ( t)
yet)= sin
=
•
( COSIO) sin (d)
,
2) ✗ (t) = 1-
It
'
ylt)=t -
Its
-
2 -
I -
213 •
✗ = I -
Yz -12
-
l
'
12 -516 •
0 I 0 •
( 1- ×)
'
516
t = 2
I 112 •
•
2 -
I 213
y2= ( t
'
-
%t3)Z= t
'
-
43 (t )
'
+ Yzg ( TY
}
in terms of
y2 ×
, Inverse Functions :
f :D
-1
if > R inverse of f f : R →D
✗ becomes and vice versa reflected on
y
-
, y=✗
f ✗ 2+1
y
=
s
<
f- ✗
YZ +1
I =
D R
continuous vs .
discontinuous
f- (X ) is continuous at ✗ =a if and
only if
linga f-
1×3=1×11,2 f- ( x) f (a)
=
:
, .
Periodic function :
A function flx) is periodic if we can find a number T such that f( ✗ +T ) =
f( × ) for all values of ✗
Odd and even function :
even : an even function is such that fl -
X)=f(×) for all values of ✗
symmetrical on
y axis
odd :
an odd function is such that fl -
X) = -
flx) for all values of ✗
Properties : odd + odd =
odd even ✗ even = even
odd ✗ odd __ even odd + even =
neither
even + even = even odd ✗ even = odd
, Monday 27th September
✗ = -12 - I
y= -13 -
t
t2=
y2=t°
'
✗ +I
"
-2T + t
ya :( ✗ 1) 21×+15+1×+1)
3- +
point the above satisfies the
a on curve (a) b) is such that ✗
=o,y=b equation
range
:
,
codomain
f : IR > o → Rao f-☒
dofnain
"
range
Domain
Range
Composition of functions
f
' '
☐ → E :D → E
:
g
f
f- ( x )
gcx )=T× glflx)) domain off
-9> if = ✗ s to we need to restrict the
compose
-
→
☐
F D
'
,
we need
range of f contained in IR > o so we take domain
E
✗ 2s ( IRIS)
if ✗ Is then
g(f(x))=xFs
Graphs and parametric functions :
2
I
y ✗
= -
•
•
• •
•
of function f.IR IR
parametric
→
every graph a is a function
""
%)
Parametric functions :
•
( cos
'
f :[0,21T] → 1122 ✗ ( t) = cos ( t)
f- (t) ( coslt) , sinlt)) ( t)
yet)= sin
=
•
( COSIO) sin (d)
,
2) ✗ (t) = 1-
It
'
ylt)=t -
Its
-
2 -
I -
213 •
✗ = I -
Yz -12
-
l
'
12 -516 •
0 I 0 •
( 1- ×)
'
516
t = 2
I 112 •
•
2 -
I 213
y2= ( t
'
-
%t3)Z= t
'
-
43 (t )
'
+ Yzg ( TY
}
in terms of
y2 ×
, Inverse Functions :
f :D
-1
if > R inverse of f f : R →D
✗ becomes and vice versa reflected on
y
-
, y=✗
f ✗ 2+1
y
=
s
<
f- ✗
YZ +1
I =
D R
continuous vs .
discontinuous
f- (X ) is continuous at ✗ =a if and
only if
linga f-
1×3=1×11,2 f- ( x) f (a)
=
:
, .
Periodic function :
A function flx) is periodic if we can find a number T such that f( ✗ +T ) =
f( × ) for all values of ✗
Odd and even function :
even : an even function is such that fl -
X)=f(×) for all values of ✗
symmetrical on
y axis
odd :
an odd function is such that fl -
X) = -
flx) for all values of ✗
Properties : odd + odd =
odd even ✗ even = even
odd ✗ odd __ even odd + even =
neither
even + even = even odd ✗ even = odd
, Monday 27th September
✗ = -12 - I
y= -13 -
t
t2=
y2=t°
'
✗ +I
"
-2T + t
ya :( ✗ 1) 21×+15+1×+1)
3- +
point the above satisfies the
a on curve (a) b) is such that ✗
=o,y=b equation