Sin²x + Cos²x = 1 TO LEARN TRIGONOMETRY
Sin²x = 1 - Cos²x
∫Sinx = -cosx IN FORMULA BOOK
Sin²x = ½ (1 - cos2x)
∫Cosx = sinx
Cos²x = 1 - Sin²x ∫-Sinx = cosx Sin (A±B) = sinAcosB ± cosAsinB
Cos²x = ½ (1 + cos2x) ∫-Cosx = -sinx Cos (A±B) = cosAcosB ∓
sinAsinB
Sin2A = 2sinAcosA
d/dx (Sinx) = cosx Tan (A+B) = tanA + tanB
Cos2A = cos²A - sin²A d/dx (Cosx) = -sinx Tan (A+B) = 1 - tanA tanB
Cos2A = 2cos²A - 1 d/dx (-Sinx) = -cosx
Cos2A = 1 - 2sin²A d/dx (Cosx) = sinx
d/dx (Tanx) = secx secx
d/dx (Secx) = tanx secx
∫Tanx = -ln |cosx|
Tanx = Sinx / Cosx ∫Cotx = ln |sinx|
Cotx = Cosx / Sinx d/dx (Cotx) = -cosecx cosecx
∫Secx Secx = tanx d/dx (Cosecx) = -cotx cosecx
Tan²x = Sec²x - 1 ∫Secx Tanx = secx
Cot²x = Cosec² - 1
∫Cosecx Cosecx = -Cotx
Tan2A = 2tanA / 1-tan²A ∫Cosecx Cotx = -Cosecx
Sin²x = 1 - Cos²x
∫Sinx = -cosx IN FORMULA BOOK
Sin²x = ½ (1 - cos2x)
∫Cosx = sinx
Cos²x = 1 - Sin²x ∫-Sinx = cosx Sin (A±B) = sinAcosB ± cosAsinB
Cos²x = ½ (1 + cos2x) ∫-Cosx = -sinx Cos (A±B) = cosAcosB ∓
sinAsinB
Sin2A = 2sinAcosA
d/dx (Sinx) = cosx Tan (A+B) = tanA + tanB
Cos2A = cos²A - sin²A d/dx (Cosx) = -sinx Tan (A+B) = 1 - tanA tanB
Cos2A = 2cos²A - 1 d/dx (-Sinx) = -cosx
Cos2A = 1 - 2sin²A d/dx (Cosx) = sinx
d/dx (Tanx) = secx secx
d/dx (Secx) = tanx secx
∫Tanx = -ln |cosx|
Tanx = Sinx / Cosx ∫Cotx = ln |sinx|
Cotx = Cosx / Sinx d/dx (Cotx) = -cosecx cosecx
∫Secx Secx = tanx d/dx (Cosecx) = -cotx cosecx
Tan²x = Sec²x - 1 ∫Secx Tanx = secx
Cot²x = Cosec² - 1
∫Cosecx Cosecx = -Cotx
Tan2A = 2tanA / 1-tan²A ∫Cosecx Cotx = -Cosecx